cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A130334 Smallest m>n such that the m-th and n-th triangular numbers are coprime.

Original entry on oeis.org

2, 4, 10, 6, 7, 10, 9, 10, 13, 12, 13, 22, 15, 16, 22, 18, 19, 22, 21, 22, 25, 24, 25, 37, 27, 28, 37, 30, 31, 37, 33, 34, 37, 36, 37, 46, 39, 40, 46, 42, 43, 46, 45, 46, 52, 48, 49, 58, 51, 52, 58, 54, 55, 58, 57, 58, 61, 60, 61, 73, 63, 64, 73, 66, 67, 70, 69, 70, 73, 72, 73
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2007

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A130334(n):
        k, Tn, Tm = n+1, n*(n+1)//2, (n+1)*(n+2)//2
        while gcd(Tn,Tm) != 1:
            k += 1
            Tm += k
        return k # Chai Wah Wu, Sep 16 2021

Formula

a(n) > n+1 for n>1; a(n) > n+2 for n with n mod 3 = 0;
a(n) = n + A130335(n).

A130724 a(n) = lcm(n,3) / gcd(n,3).

Original entry on oeis.org

0, 3, 6, 1, 12, 15, 2, 21, 24, 3, 30, 33, 4, 39, 42, 5, 48, 51, 6, 57, 60, 7, 66, 69, 8, 75, 78, 9, 84, 87, 10, 93, 96, 11, 102, 105, 12, 111, 114, 13, 120, 123, 14, 129, 132, 15, 138, 141, 16, 147, 150, 17, 156, 159, 18, 165, 168, 19, 174, 177, 20, 183, 186
Offset: 0

Views

Author

W. Neville Holmes, Jul 04 2007

Keywords

Examples

			a(7) = 21 because lcm(3,7) = 21, gcd(3,7) = 1 and 21/1 = 21.
		

Crossrefs

Programs

Formula

a(n) = A109044(n) / A109007(n).
From Wesley Ivan Hurt, Jul 24 2016: (Start)
G.f.: x*(3 + 6*x + x^2 + 6*x^3 + 3*x^4)/(x^3 - 1)^2.
a(n) = 2*a(n-3) - a(n-6) for n>5.
a(n) = 27*n/(5 + 4*cos(2*n*Pi/3))^2.
If n mod 3 = 0, then n/3, else 3*n.
a(n) = lcm(numerator(n/3), denominator(n/3)). (End)
Sum_{k=1..n} a(k) ~ (19/18)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

Corrected and extended by Harvey P. Dale, May 16 2013

A234041 a(n) = binomial(n+2,2)*gcd(n,3)/3, n >= 0.

Original entry on oeis.org

1, 1, 2, 10, 5, 7, 28, 12, 15, 55, 22, 26, 91, 35, 40, 136, 51, 57, 190, 70, 77, 253, 92, 100, 325, 117, 126, 406, 145, 155, 496, 176, 187, 595, 210, 222, 703, 247, 260, 820, 287, 301, 946, 330, 345, 1081, 376, 392, 1225, 425, 442, 1378, 477, 495, 1540, 532
Offset: 0

Views

Author

Wolfdieter Lang, Feb 24 2014

Keywords

Comments

Apart from the first term, this is the same as A027626. - Bruno Berselli, Feb 24 2014
This is the sequence of the fourth column of the triangle A107711.

Examples

			a(6) = binomial(8,2) = 28 (example for n == 0 (mod 3)),
a(7) = binomial(9,2)/3 = 3*4 = 12 (example for n == 1 (mod 3)),
a(8) = binomial(10,2)/3 = 5*3 = 15 (example for n == 2 (mod 3)).
		

Crossrefs

Cf. A027626, A107711, A026741 (third column of A107711), A109007 (gcd(n,3)).

Programs

  • Mathematica
    Table[Binomial[n + 2, 2] GCD[n + 3, 3]/3, {n, 0, 60}] (* Bruno Berselli, Feb 24 2014 *)
    CoefficientList[Series[(1 + x + 2 x^2 + 7 x^3 + 2 x^4 + x^5 + x^6)/(1 - x^3)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Feb 26 2014 *)
  • PARI
    a(n) = numerator((n+1)*(n+2)/6); \\ Altug Alkan, Apr 19 2018

Formula

G.f.: (1+x+2*x^2+7*x^3+2*x^4+x^5+x^6)/(1-x^3)^3.
a(n) = A107711(n+3,3) for n >= 0.
a(n) = (2+(-1)^(n+floor((n+1)/3)))*(n+1)*(n+2)/6. - Bruno Berselli, Feb 24 2014
a(n) is the numerator of (n+1)*(n+2)/6. - Altug Alkan, Apr 19 2018
Sum_{n>=0} 1/a(n) = 6 - 4*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022

A132951 Period 6: repeat [1, 3, 1, -1, -3, -1].

Original entry on oeis.org

1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1
Offset: 0

Views

Author

Paul Curtz, Nov 22 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 3*a(n-1)-a(n-3)+3*a(n-4).
O.g.f.: (1+3*x+x^2)/((x+1)*(x^2-x+1)) = -(1/3)/(x+1)+(1/3)*(4*x+4)/(x^2-x+1). - R. J. Mathar, Nov 28 2007
a(n) = -(1/3)*(-1)^n+(4/3)*cos(Pi*n/3)+(4*3^0.5/3)*sin(Pi*n/3). - Richard Choulet, Jan 02 2008
a(n) = a(n-6) = A131531(n+3)+A131531(n+1)+3*A131531(n+2). - R. J. Mathar, Apr 04 2008
a(n) = A109007(n+2) * A130151(n). - Wesley Ivan Hurt, Jun 22 2013

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.

A216913 a(n) = Gauss_primorial(3*n, 3) / Gauss_primorial(3*n, 3*n).

Original entry on oeis.org

1, 2, 1, 2, 5, 2, 7, 2, 1, 10, 11, 2, 13, 14, 5, 2, 17, 2, 19, 10, 7, 22, 23, 2, 5, 26, 1, 14, 29, 10, 31, 2, 11, 34, 35, 2, 37, 38, 13, 10, 41, 14, 43, 22, 5, 46, 47, 2, 7, 10, 17, 26, 53, 2, 55, 14, 19, 58, 59, 10, 61, 62, 7, 2, 65, 22, 67, 34, 23, 70, 71
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

The term Gauss primorial was introduced in A216914 and denotes the restriction of the Gauss factorial N_n! (see A216919) to prime factors.
Multiplicative because both A007947 and A109007 are. - Andrew Howroyd, Aug 02 2018

Crossrefs

Programs

  • Magma
    [&+[EulerPhi(d)*MoebiusMu(3*d)^2:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Oct 19 2019
  • Mathematica
    Table[n/Sum[Floor[Cos[Pi k^(3 n)/(3 n)]^2], {k, 3 n}], {n, 71}] (* Michael De Vlieger, May 24 2016 *)
    a[n_] := Times @@ (First /@ FactorInteger[n])/GCD[n, 3]; Array[a, 100] (* Amiram Eldar, Nov 17 2022 *)
  • PARI
    a(n)={factorback(factor(n)[, 1])/gcd(3,n)} \\ Andrew Howroyd, Aug 02 2018
    
  • Sage
    def Gauss_primorial(N, n):
        return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j))
    def A216913(n): return Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n)
    [A216913(n) for n in (1..80)]
    

Formula

a(n) = n/Sum_{k=1..3n} floor(cos^2(Pi*k^(3n)/(3n))). - Anthony Browne, May 24 2016
a(n) = A007947(n)/A109007(n). - Andrew Howroyd, Aug 02 2018
a(n) = Sum_{d|n} phi(d)*mu(3d)^2. - Ridouane Oudra, Oct 19 2019
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(3^e) = 1, and a(p^e) = p for p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (9/22) * Product_{p prime} (1 - 1/(p*(p+1))) = (9/22) * A065463 = 0.2881809... . (End)

A194130 a(n) = n!/gcd(n,3).

Original entry on oeis.org

1, 2, 2, 24, 120, 240, 5040, 40320, 120960, 3628800, 39916800, 159667200, 6227020800, 87178291200, 435891456000, 20922789888000, 355687428096000, 2134124568576000, 121645100408832000, 2432902008176640000, 17030314057236480000, 1124000727777607680000
Offset: 1

Views

Author

Paul Curtz, Aug 16 2011

Keywords

Crossrefs

Programs

  • Maple
    A194130 := proc(n)
            n!/igcd(n,3) ;
    end proc:
    seq(A194130(n),n=1..30) ;
  • Mathematica
    Table[n!/GCD[n,3],{n,20}] (* Harvey P. Dale, Aug 08 2019 *)

Extensions

Definition and offset corrected by R. J. Mathar, Aug 18 2011

A203648 a(n) = (1/4) * period of repeating sequence {S(j) mod 2n}, where S(j) is the sum of the first j squares.

Original entry on oeis.org

1, 2, 9, 4, 5, 18, 7, 8, 27, 10, 11, 36, 13, 14, 45, 16, 17, 54, 19, 20, 63, 22, 23, 72, 25, 26, 81, 28, 29, 90, 31, 32, 99, 34, 35, 108, 37, 38, 117, 40, 41, 126, 43, 44, 135, 46, 47, 144, 49, 50, 153, 52, 53, 162, 55, 56, 171, 58, 59, 180, 61, 62, 189, 64, 65
Offset: 1

Views

Author

Gary Detlefs, Jan 04 2012

Keywords

Comments

This sequence lists the periods of the sum of the first n squares mod 2*n. In most cases, (Sum_{k=1..n} k^(2*j)) mod 2*n will produce the same sequence. The repeating sequences appear to always end in 2 zeros.
(Sum_{k=1..n} k^j) mod 2 has period 4 repeating [1,1,0,0] for any j.
It appears that a(n) is the number of n-colorings of the trefoil knot. - Tsuyoshi Miezaki, May 01 2022

Examples

			G.f. = x + 2*x^2 + 9*x^3 + 4*x^4 + 5*x^5 + 18*x^6 + 7*x^7 + 8*x^8 + 27*x^9 + ...
(Sum_{k=1..n} k^2) mod 4 has period 8 repeating [1,1,2,2,3,3,0,0] so a(2) = 2.
		

Crossrefs

Cf. A008585 (3*n), A109007.

Programs

  • Magma
    [n*(1+2*Floor(((n+2) mod 3)/2)): n in [1..60]]; // Vincenzo Librandi, Mar 19 2012
    
  • Maple
    seq(n*(1+floor(((n+2) mod 3)/2))), n= 1..57);
  • Mathematica
    CoefficientList[Series[(1+2*x+9*x^2+2*x^3+x^4)/((1-x)^2*(1+x+x^2)^2),{x,0,60}],x] (* Vincenzo Librandi, Mar 19 2012 *)
    Table[n (1 + 2 Floor[Mod[n + 2, 3]/2]), {n, 57}] (* Michael De Vlieger, Jan 14 2017 *)
    LinearRecurrence[{0,0,2,0,0,-1},{1,2,9,4,5,18},70] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = if( n%3, n, 3*n)}; /* Michael Somos, Jan 18 2017 */

Formula

a(n) = 3*n if n mod 3 = 0, otherwise n.
a(n) = n*(1 + 2*floor(((n+2) mod 3)/2)).
From Bruno Berselli, Jan 04 2012: (Start)
G.f.: x*(1 + 2*x + 9*x^2 + 2*x^3 + x^4)/((1-x)^2*(1 + x + x^2)^2).
a(n) = 2*n + 2*n*((-1)^(-2*n/3) + (-1)^(2*n/3)-1/2)/3.
a(n) = -a(-n) = 2*a(n-3) - a(n-6). (End)
a(n) = numerator(3n/((3 + 2*(-1 + n))*(1 + n))). - Andres Cicuttin, Jan 12 2017
a(n) is multiplicative with a(p^e) = p^(e+1) if p = 3, a(p^e) = p^e otherwise. - Michael Somos, Jan 18 2017
a(n) = n*(5 + 4*cos((2*Pi*n)/3)) / 3. - Colin Barker, Mar 06 2017
From Amiram Eldar, Dec 27 2022: (Start)
Dirichlet g.f.: zeta(s-1)*(3^(-s)*(6 + 3^s)).
Sum_{k=1..n} a(k) ~ (5/6) * n^2. (End)
a(n) = n*A109007(n). - Lechoslaw Ratajczak, Aug 16 2023
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*log(2)/9. - Amiram Eldar, Aug 21 2023

A244840 Denominators of the triangle T(n,k) = (n*(n+1)/2+k+1)/(k+1) for n >= k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 5, 2, 1, 1, 1, 3, 1, 5, 3, 1, 2, 1, 1, 1, 1, 5, 1, 7, 2, 1, 1, 2, 1, 4, 1, 2, 7, 8, 1, 2, 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 1, 1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 1, 2
Offset: 0

Views

Author

Paul Curtz, Jul 07 2014

Keywords

Comments

Numerators: A244734(n,k).
See A244734 for the first entries of the rational triangle T(n,k).

Examples

			T(0,0) = 1/1, T(1,0) = 2/1, T(1,1) = 3/2,... .
The triangle a(n,k) begins:
n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
0:   1
1:   1 2
2:   1 2 1
3:   1 1 1 2
4:   1 1 3 2 1
5:   1 2 1 4 1 2
6:   1 2 1 4 5 2 1
7:   1 1 3 1 5 3 1 2
8:   1 1 1 1 5 1 7 2 1
9:   1 2 1 4 1 2 7 8 1  2
10:  1 2 3 4 1 6 7 8 9  2  1
11:  1 1 1 2 5 1 7 4 3  5  1  2
12:  1 1 1 2 5 1 7 4 3  5 11  2 1
13:  1 2 3 4 5 6 1 8 9 10 11 12 1   2
14:  1 2 1 4 1 2 1 8 3  2 11  4 13  2  1
15:  1 1 1 1 1 1 7 1 3  1 11  1 13  7  1  2
16:  1 1 3 1 5 3 7 1 9  5 11  3 13  7 15  2  1
17:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16  1  2
18:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16 17  2  1
19:  1 1 3 2 1 3 7 4 9  1 11  6 13  7  3  8 17  9  1  2
20:  1 1 1 2 1 1 1 4 3  1 11  2 13  1  1  8 17  3 19  2  1
n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
.. reformatted - _Wolfdieter Lang_, Jul 28 2014 .
The second column is of period 4: repeat 2, 2, 1, 1. From A014695 or A130658.
The third column is of period 3: repeat 1, 1, 3. From A109007.
The fourth column is of period 8: repeat 2, 2, 4, 4, 1, 1, 4, 4.
The fifth column is of period 5: repeat 1, 1, 5, 5, 5.
The sixth column is of period 12: repeat 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3 .
The seventh column is of period 7: repeat 1, 1, 7, 7, 7, 7, 7.
Hence the positive terms of A022998.
Main diagonal: A000034(n).
Alternate main and second diagonal: A130658(n).
Common denominator by row: 1, 2, 2, 2, 6, 4, 20, 30, 70, ... .
		

Crossrefs

Programs

  • Mathematica
    Table[(n*(n+1)/2+k+1)/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 08 2014 *)

Formula

a(n,k) = denominator((n*(n+1)/2 + k + 1)/(k+1)) for n >= k >= 0.

Extensions

Editse: Name reformulated, comment with T(n,k) reference added. - Wolfdieter Lang, Jul 28 2014

A257106 Denominators of the inverse binomial transform of the Bernoulli numbers with B(1)=2/3.

Original entry on oeis.org

1, 3, 6, 2, 10, 6, 42, 6, 30, 2, 22, 6, 2730, 6, 6, 2, 170, 6, 798, 6, 330, 2, 46, 6, 2730, 6, 6, 2, 290, 6, 14322, 6, 510, 2, 2, 6, 1919190, 6, 6, 2, 4510, 6, 1806, 6, 690, 2, 94, 6, 46410, 6, 66, 2, 530, 6, 798, 6, 870, 2, 118, 6, 56786730, 6, 6, 2, 170, 6
Offset: 0

Views

Author

Paul Curtz, Apr 23 2015

Keywords

Comments

Difference table of Bernoulli numbers with B(1)=2/3:
1, 2/3, 1/6, 0, -1/30, 0, 1/42, 0, ...
-1/3, -1/2, -1/6, -1/30, 1/30, 1/42, -1/42, ...
-1/6, 1/3, 2/15, 1/15, -1/105, -1/21, ...
1/2, -1/5, -1/15, -8/105, -4/105, ...
-7/10, 2/15, -1/105, 4/105, ...
5/6, -1/7, 1/21, ...
-41/42, 2/15, ...
7/6, ...
...
First column: 1, -1/3, -1/6, 1/2, -7/10, 5/6, -41/42, 7/6, -41/30, 3/2, -35/22, 11/6, ... . a(n) is the n-th term of the denominators.
Antidiagonal sums: 1, 1/3, -1/2, 2/3, -5/6, 1, -7/6, 4/3, -3/2, 5/3, -11/6, 2, ... . See A060789(n).
a(2n+2)/a(2n+1) = 2, 5, 7, 5, 11, 455, ... .
By definition, for B(1) = b, the inverse binomial transform is
Bi(b) = 1, -1 + b, 7/6 - 2*b, -3/2 + 3*b, 59/30 + 4*b, ...
= A176328(n)/A176591(n) - (-1)^n *n*b.
With Bic(b) = 0, -1/2 + b, 1 - 2*b, -3/2 + 3*b, 2 + 4*b, ...
= (-1)^n *(A001477(n)/2 - n*b),
Bi(b) = (-1)^n *(A164555(n)/A027642(n) + A001477(n)/2 - n*b) =
= A027641(n)/A027642(n) + Bic(b) .

Examples

			a(0) = 1-0, a(1) = -1/2 +1/6 = -1/3, a(2) = 1/6 -1/3 = -1/6, a(3) = 0 +1/2.
		

Crossrefs

Programs

  • Mathematica
    max = 66; B[1] = 2/3; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Denominator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 11 2015 *)
  • Sage
    def A257106_list(len, B1) :
        T = matrix(QQ, 2*len+1)
        for m in (0..2*len) :
            T[0, m] = bernoulli_polynomial(1, m) if m <> 1 else B1
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return [denominator(T[k, 0]) for k in (0..len-1)]
    A257106_list(66, 2/3) # Peter Luschny, May 09 2015

Formula

Conjecture: a(2n+1) = 3 followed by period 3: repeat 2, 6, 6.
Conjecture: a(2n) = A002445(n)/(period 3: repeat 1, 1, 3).
a(n) = A027641(n)/A027642(n) - (-1)^n *n/6.

A281098 a(n) is the GCD of the sequence d(n) = A261327(k+n) - A261327(k) for all k.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, 9, 1, 20, 3, 11, 1, 24, 1, 13, 3, 28, 1, 15, 1, 32, 3, 17, 1, 36, 1, 19, 3, 40, 1, 21, 1, 44, 3, 23, 1, 48, 1, 25, 3, 52, 1, 27, 1, 56, 3, 29, 1, 60, 1, 31, 3, 64, 1, 33, 1, 68, 3, 35, 1, 72, 1, 37, 3, 76, 1, 39, 1
Offset: 0

Views

Author

Paul Curtz, Jan 14 2017

Keywords

Comments

Successive sequences:
0: 0, 0, 0, 0, ... = 0 * ( )
1: 4, -3, 11, -8, ... = 1 * ( )
2: 1, 8, 3, 16, ... = 1 * ( ) A195161
3: 12, 0, 27, -3, ... = 3 * (4, 0, 9, -1, ...)
4: 4, 24, 8, 40, ... = 4 * (1, 6, 2, 10, ...) A064680
5; 28, 5, 51, 4, ... = 1 * ( )
6: 9, 48, 15, 72, ... = 3 * (3, 16, 5, 24, ...) A195161
7: 52, 12, 83, 13, ... = 1 * ( )
8: 16, 80, 24, 112, ... = 8 * (2, 10, 3, 14, ...) A064080
9: 84 21, 123, 24, ... = 3 * (28, 7, 41, 8, ...)
10: 25, 120, 35, 160, ... = 5 * (5, 24, 7, 32, ...) A195161

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (-1 - x - 4 x^2 - 5 x^3 - 3 x^4 - 6 x^5 + 3 x^6 - 5 x^7 + 4 x^8 - x^9 + x^10))/((x^2 - x + 1) (1 + x + x^2) (x - 1)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 79}], x] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    f(n) = numerator((4 + n^2)/4);
    a(n) = gcd(vector(1000, k, f(k+n) - f(k))); \\ Michel Marcus, Jan 15 2017
    
  • PARI
    A281098(n) = if(n%2, gcd((n\2)-1,3), n>>(bitand(n,2)/2)); \\ Antti Karttunen, Feb 15 2023

Formula

G.f.: -x*( -1 - x - 4*x^2 - 5*x^3 - 3*x^4 - 6*x^5 + 3*x^6 - 5*x^7 + 4*x^8 - x^9 + x^10 )/( (x^2 - x + 1)*(1 + x + x^2)*(x - 1)^2*(1 + x)^2*(1 + x^2)^2 ). - R. J. Mathar, Jan 31 2017
a(2*k) = A022998(k).
a(2*k+1) = A109007(k-1).
a(3*k) = interleave 3*k*(3 +(-1)^k)/2, 3.
a(3*k+1) = interleave 1, A166304(k).
a(3*k+2) = interleave A166138(k), 1.
a(4*k) = 4*k.
a(4*k+1) = period 3: repeat [1, 1, 3].
a(4*k+2) = 1 + 2*k.
a(4*k+3) = period 3: repeat [3, 1, 1].
a(n+12) - a(n) = 6*A131743(n+3).
a(n) = (18*n + 40 - 16*cos(n*Pi/3) + 9*n*cos(n*Pi/2) + 32*cos(2*n*Pi/3) + (18*n - 40)*cos(n*Pi) + 3*n*cos(3*n*Pi/2) - 16*cos(5*n*Pi/3))/48. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Corrected and extended by Michel Marcus, Jan 15 2017
Previous Showing 11-20 of 20 results.