cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A010875 a(n) = n mod 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0
Offset: 0

Views

Author

Keywords

Comments

Period 6: repeat [0, 1, 2, 3, 4, 5].
The rightmost digit in the base-6 representation of n. - Hieronymus Fischer, Jun 11 2007
[a(n) * a(m)] mod 6 == a(n*m mod 6) == a(n*m). - Jon Perry, Nov 11 2014
If n > 3 and (a(n) is in {0,2,3,4}), then n is not prime. - Jean-Marc Rebert, Jul 22 2015, corrected by M. F. Hasler, Jul 24 2015

Crossrefs

Partial sums: A130484. Other related sequences A130481, A130482, A130483, A130485.
Cf. also A079979, A097325, A122841.

Programs

Formula

Complex representation: a(n) = (1/6) * (1 - r^n) * Sum_{k = 1..6} k * Product_{1 <= m < 6, m <> k} (1-r^(n-m)), where r = exp((Pi/3)*i) = (1 + sqrt(3)*i)/2 and i = sqrt(-1).
Trigonometric representation: a(n) = (16/3)^2 * (sin(n*Pi/6))^2 * Sum_{k = 1..6} k * Product_{1 <= m < 6, m<>k} (sin((n-m)*Pi/6))^2.
G.f.: g(x) = (Sum_{k = 1..6} k*x^k)/(1-x^6).
Also: g(x) = x*(5*x^6 - 6*x^5 + 1)/((1 - x^6)*(1 - x)^2). - Hieronymus Fischer, May 31 2007
a(n) = (n mod 2) + 2(floor(n/2) mod 3) = A000035(n) +2*A010872(A004526(n));
a(n) = (n mod 3) + 3(floor(n/3) mod 2) = A010872(n) +3*A000035(A002264(n)). - Hieronymus Fischer, Jun 11 2007
a(n) = 2.5 - 0.5*(-1)^n - cos(Pi*n/3) - 3^0.5*sin(Pi*n/3) -cos(2*Pi*n/3) - 3^0.5/3*sin(2*Pi*n/3). - Richard Choulet, Dec 11 2008
a(n) = n^3 mod 6. - Zerinvary Lajos, Oct 29 2009
a(n) = floor(12345/999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(373/9331*6^(n+1)) mod 6. - Hieronymus Fischer, Jan 04 2013
a(n) = 5/2 - (-1)^n/2 - 2*0^((-1)^(n/6 - 1/12 + (-1)^n/12) - (-1)^(n/2 - 1/4 +(-1)^n/4)) + 2*0^((-1)^(n/6 + 1/4 + (-1)^n/12) + (-1)^(n/2 - 1/4 + (-1)^n/4)). - Wesley Ivan Hurt, Jun 23 2015
E.g.f.: -sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) - 2*cosh(x/2)*cos(sqrt(3)*x/2). - Robert Israel, Jul 22 2015

Extensions

Formulas 1 to 6 re-edited for better readability by Hieronymus Fischer, Dec 05 2011
More terms from Antti Karttunen, Dec 22 2017

A102669 Number of digits >= 2 in decimal representation of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007088 (numbers in base 2). - Bernard Schott, Feb 19 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=2 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[DigitCount@ n, {2, 9}], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

Contribution from Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 4/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(2*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
General formulas for the number of digits >= d in the decimal representations of n, where 1 <= d <= 9:
a(n) = Sum_{j=1..m+1} (floor(n/10^j + (10-d)/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(d*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102685 Partial sums of A055640.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of nonzero digits occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor((n/10^j)+0.9)*(2n + 2 + (0.8 - floor((n/10^j)+0.9))*10^j) - floor(n/10^j)*(2n + 2 - (floor(n/10^j)+1) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A055640(n) + (1/2)*Sum_{j=1..m+1} ((8*floor((n/10^j)+0.9)/10 + floor(n/10^j))*10^j - (floor((n/10^j)+0.9)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 9*m*10^(m-1). (This is the total number of nonzero digits occurring in all the numbers with <= m digits.)
G.f.: g(x) = (1/(1-x)^2) * Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)

A160094 a(n) = 1 + A122840(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Anonymous, May 01 2009

Keywords

Comments

a(n) is the Levenshtein distance from the decimal expansion of n - 1 to the decimal expansion of n. For example, to convert "9" to "10", substitute "0" for "9" and insert "1". Since two such operations are required, a(10) = 2. See the analogous A091090 (binary expansion) and A115777 (full definition). - Rick L. Shepherd, Mar 25 2015

Examples

			a(160) = 2 because the last nonzero digit of 160 (counting from left to right), when 160 is written in base 10, is 6, and that 6 occurs 2 digits from the right in 160.
		

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Range[150]]+1 (* Harvey P. Dale, Feb 06 2015 *)

Formula

From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=0..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + 1 + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = 1 + A054899(n) - A054899(n-1).
G.f.: g(x) = (x/(1-x)) + Sum_{j>0} x^10^j/(1-x^10^j). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/9. - Amiram Eldar, Jul 10 2023
a(n) = A122840(10*n). - R. J. Mathar, Jun 28 2025

Extensions

Name simplified by Jon E. Schoenfield, Feb 26 2014

A160093 Number of digits in n, excluding any trailing zeros.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Anonymous, May 01 2009

Keywords

Examples

			a(1060000) = 3 because discarding the trailing zeros from 1060000 leaves 106, which is a 3-digit number.
		

Crossrefs

Programs

  • Mathematica
    lnzd[n_]:=Module[{spl=Last[Split[IntegerDigits[n]]]},If[!MemberQ[ spl,0], IntegerLength[n], IntegerLength[n]-Length[spl]]]; Array[lnzd,110] (* Harvey P. Dale, Jun 05 2013 *)
    Table[IntegerLength[n] - IntegerExponent[n, 10], {n, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n)=if(n==0,1,#digits(n/10^valuation(n,10))) \\ Joerg Arndt, Jan 11 2017
    
  • PARI
    a(n)=logint(n,10)+1-valuation(n,10) \\ Charles R Greathouse IV, Jan 12 2017
  • Python
    def A160093(n):
         return len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jan 11 2017
    

Formula

From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = 1 + Sum_{j=0..m} ceiling(frac(n/10^j)).
a(n) = 1 - Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n)= A055642(n) + A054899(n-1) - A054899(n).
G.f.: (x/(1-x)) + (1/(1-x))*Sum_{j>0} x^(10^j+1)*(1 - x^(10^j-1))/(1-x^10^j). (End)
a(n) = A055642(A004086(n)). - Indranil Ghosh, Jan 11 2017
a(n) = A055642(A004151(n)). - Amiram Eldar, Sep 14 2020

Extensions

Simpler definition and changed example from Jon E. Schoenfield, Feb 15 2014

A079979 Characteristic function of multiples of six.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Period 6: repeat [1, 0, 0, 0, 0, 0].
a(n)=1 if n=6k, a(n)=0 otherwise.
Decimal expansion of 1/999999.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,1,2}.
Also, number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,2,3,4}.
a(n) is also the number of partitions of n such that each part is six (a(0)=1 because the empty partition has no parts to test equality with six). Hence a(n) is also the number of 2-regular graphs on n vertices with each part having girth exactly six. - Jason Kimberley, Oct 10 2011
This sequence is the Euler transformation of A185016. - Jason Kimberley, Oct 10 2011

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), this sequence (g=6), A082784 (g=7).

Programs

Formula

a(n) = a(n-6).
G.f.: 1/(1-x^6).
a(n) = floor((1/2)*cos(n*Pi/3) + 1/2). - Gary Detlefs, May 16 2011
a(n) = floor(n/6) - floor((n-1)/6). - Tani Akinari, Oct 23 2012
a(n) = (((((v^n - w^n)^2)*(2 - (-1)^n)*(w^(2*n) + w^n - 3))^2 - 144)^2)/20736, where w = (-1+i*sqrt(3))/2, v = (1+i*sqrt(3))/2. - Bogart B. Strauss, Sep 20 2013
E.g.f.: (2*cos(sqrt(3)*x/2)*cosh(x/2) + cosh(x))/3. - Vaclav Kotesovec, Feb 15 2015

Extensions

More terms from Antti Karttunen, Dec 22 2017

A235127 Greatest k such that 4^k divides n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Tom Edgar, Jan 03 2014

Keywords

Examples

			Since 4^2 divides 32 and 4^3 does not, we have a(32) = 2. Likewise, since no positive power of 4 divides 9, a(9) = 0.
		

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Range@ 105, 4] (* Michael De Vlieger, Nov 18 2017 *)
  • PARI
    A235127(n) = valuation(n,4); \\ Antti Karttunen, Nov 18 2017
    
  • Python
    def A235127(n): return (~n&n-1).bit_length()>>1 # Chai Wah Wu, Jul 08 2022
  • Sage
    n=100 #change n for more terms
    [valuation(i,4) for i in [1..n]]
    

Formula

a(n) = valuation(n,4).
G.f.: Sum_{k>=1} x^(4^k)/(1 - x^(4^k)). - Ilya Gutkovskiy, Jan 28 2017
a(n) = A004526(A007814(n)). - Antti Karttunen, Nov 18 2017
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/3. - Amiram Eldar, Jan 17 2022

Extensions

More terms from Antti Karttunen, Nov 18 2017

A102683 Number of digits 9 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    a102683 =  length . filter (== '9') . show
    -- Reinhard Zumkeller, Dec 29 2011
  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    a[n_] := DigitCount[n, 10, 9]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)

Formula

a(A007095(n)) = 0; a(A011539(n)) > 0. - Reinhard Zumkeller, Dec 29 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/10) - floor(n/10^j)), where m=floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(A235049(n)) = 0. - Reinhard Zumkeller, Apr 16 2014

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A047253 Numbers that are congruent to {1, 2, 3, 4, 5} mod 6.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Numbers that are not divisible by 6. - Benoit Cloitre, Jul 11 2009
More generally the sequence a(n,m) of numbers not divisible by some fixed integer m >= 2 is given by a(n,m) = n - 1 + floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009

Crossrefs

Programs

Formula

a(n) = 5 + a(n-5).
G.f.: x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ).
a(n) = n - 1 + floor((n+4)/5). - Benoit Cloitre, Jul 11 2009
A122841(a(n)) = 0. - Reinhard Zumkeller, Nov 10 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = (15-4*sqrt(3))*Pi/36. - Amiram Eldar, Dec 31 2021

Extensions

Extended by R. J. Mathar, Oct 18 2008

A044102 Multiples of 36.

Original entry on oeis.org

0, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692, 1728
Offset: 0

Views

Author

Keywords

Comments

Also, k such that Fibonacci(k) mod 27 = 0. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004
A033183(a(n)) = n+1. - Reinhard Zumkeller, Nov 07 2009
A122841(a(n)) > 1 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Sum of the numbers from 4*(n-1) to 4*(n+1). - Bruno Berselli, Oct 25 2018

Crossrefs

Programs

Formula

G.f.: 36*x/(1 - x)^2.
a(n) = A167632(n+1). - Reinhard Zumkeller, Nov 07 2009
a(n) = 36*n. - Vincenzo Librandi, Jan 26 2011
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 36*x*exp(x).
a(n) = 18*A005843(n) = 2*A008600(n).
a(n) = 2*a(n-1) - a(n-2). (End)
Previous Showing 11-20 of 52 results. Next