cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Comments

Essentially the same as A048645. - T. D. Noe, Mar 28 2011

Examples

			Triangle begins as:
     2;
     3,    4;
     5,    6,    8;
     9,   10,   12,   16;
    17,   18,   20,   24,   32;
    33,   34,   36,   40,   48,   64;
    65,   66,   68,   72,   80,   96,  128;
   129,  130,  132,  136,  144,  160,  192,  256;
   257,  258,  260,  264,  272,  288,  320,  384,  512;
   513,  514,  516,  520,  528,  544,  576,  640,  768, 1024;
  1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
		

Crossrefs

Programs

  • Magma
    [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
    
  • Mathematica
    Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
  • PARI
    A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
    
  • Python
    from math import isqrt, comb
    def A173786(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        return (1<Chai Wah Wu, Jun 20 2025
  • Sage
    flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
    

Formula

1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A140513(n,k) - A173787(n,k), 0<=k<=n.
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,k) * A173787(n,k) = A173787(2*n,2*k), 0<=k<=n.
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).

Extensions

Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010

A110286 a(n) = 15*2^n.

Original entry on oeis.org

15, 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, 15360, 30720, 61440, 122880, 245760, 491520, 983040, 1966080, 3932160, 7864320, 15728640, 31457280, 62914560, 125829120, 251658240, 503316480, 1006632960, 2013265920, 4026531840, 8053063680, 16106127360
Offset: 0

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).

Programs

Formula

G.f.: 15/(1-2x). - Philippe Deléham, Nov 23 2008
a(n) = A000079(n)*15 = A007283(n)*5 = A020714(n)*3. - Omar E. Pol, Dec 17 2008
a(n) = A173787(n+4,n). - Reinhard Zumkeller, Feb 28 2010
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
a(n) = 2*a(n-1) (with a(0)=15). - Vincenzo Librandi, Dec 26 2010
E.g.f.: 15*exp(2*x). - Stefano Spezia, May 15 2021

Extensions

Edited by Omar E. Pol, Dec 16 2008

A159741 a(n) = 8*(2^n - 1).

Original entry on oeis.org

8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1

Author

Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009

Keywords

Comments

Fifth diagonal of the array which contains m-acci numbers in the m-th row.
The base array is constructed from m-acci numbers starting each with 1, 1, and 2 and filling one row of the table (see the examples).
The main and the upper diagonals of the table are the powers of 2, A000079.
The first subdiagonal is essentially A000225, followed by essentially A036563.
The next subdiagonal is this sequence here, followed by A159742, A159743, A159744, A159746, A159747, A159748.
a(n) written in base 2: 1000, 11000, 111000, 1111000, ..., i.e., n times 1 and 3 times 0 (A161770). - Jaroslav Krizek, Jun 18 2009
Also numbers for which n^8/(n+8) is an integer. - Vicente Izquierdo Gomez, Jan 03 2013

Examples

			From _R. J. Mathar_, Apr 22 2009: (Start)
The base table is
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.2..2....2....2....2....2....2....2....2....2....2....2....2....2
.0..2....3....4....4....4....4....4....4....4....4....4....4....4
.0..2....5....7....8....8....8....8....8....8....8....8....8....8
.0..2....8...13...15...16...16...16...16...16...16...16...16...16
.0..2...13...24...29...31...32...32...32...32...32...32...32...32
.0..2...21...44...56...61...63...64...64...64...64...64...64...64
.0..2...34...81..108..120..125..127..128..128..128..128..128..128
.0..2...55..149..208..236..248..253..255..256..256..256..256..256
.0..2...89..274..401..464..492..504..509..511..512..512..512..512
.0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024
.0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048
.0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096
Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
		

Programs

Formula

From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
a(n) = A173787(n+3,3) = A175166(2*n)/A175161(n). - Reinhard Zumkeller, Feb 28 2010
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
a(n) = 8*A000225(n) = 4*A000918(n+1) = 2*A028399(n+2). (End)

Extensions

More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009

A059153 a(n) = 2^(n+2)*(2^(n+1)-1).

Original entry on oeis.org

4, 24, 112, 480, 1984, 8064, 32512, 130560, 523264, 2095104, 8384512, 33546240, 134201344, 536838144, 2147418112, 8589803520, 34359476224, 137438429184, 549754765312, 2199021158400, 8796088827904, 35184363700224, 140737471578112, 562949919866880
Offset: 0

Author

Jonas Wallgren, Feb 02 2001

Keywords

Comments

A hierarchical sequence (S(W'2{2}c) - see A059126).
a(n) written in base 2: 100, 11000, 1110000, ..., i.e., (n+1) times 1 and (n+2) times 0 (see A163663). - Jaroslav Krizek, Aug 12 2009
Also, the number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 513", based on the 5-celled von Neumann neighborhood. - Robert Price, May 04 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Programs

  • Mathematica
    Table[2^(n + 2)*(2^(n + 1) - 1), {n, 0, 23}] (* and *) LinearRecurrence[{6, -8}, {4, 24}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
  • PARI
    a(n) = { 2^(n + 2)*(2^(n + 1) - 1) } \\ Harry J. Smith, Jun 25 2009

Formula

a(n) = A173787(2*n+3,n+2) = 4*A006516(n+1). - Reinhard Zumkeller, Feb 28 2010
From Colin Barker, Apr 28 2013: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: 4 / ((2*x-1)*(4*x-1)). (End)
a(n) = 2*A020522(n+1). - Hussam al-Homsi, Jun 06 2021
E.g.f.: 4*exp(2*x)*(2*exp(2*x) - 1). - Elmo R. Oliveira, Dec 10 2023

Extensions

Revised by Henry Bottomley, Jun 27 2005

A140513 Repeat 2^n n times.

Original entry on oeis.org

2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0

Author

Paul Curtz, Jul 01 2008

Keywords

Crossrefs

Programs

  • Haskell
    a140513 n k = a140513_tabl !! (n-1) !! (k-1)
    a140513_row n = a140513_tabl !! (n-1)
    a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2]
    a140513_list = concat a140513_tabl
    -- Reinhard Zumkeller, Nov 14 2015
    
  • Mathematica
    t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *)
    Table[Table[2^n,n],{n,10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
  • Python
    from math import isqrt
    def A140513(n): return 1<<(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) # Chai Wah Wu, Nov 07 2024

Formula

a(n) = 2*A137688(n).
a(n) = A018900(n+1) - A059268(n). - Reinhard Zumkeller, Jun 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
Seen as a triangle read by rows: T(n,k)=2^n, 1 <= k <= n.
T(n,k) = A173786(n-1,k-1) + A173787(n-1,k-1), 1 <= k <= n. (End)
Sum_{n>=0} 1/a(n) = 2. - Amiram Eldar, Aug 16 2022

A175164 a(n) = 16*(2^n - 1).

Original entry on oeis.org

0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), this sequence (m=16), A175165 (m=32), A175166 (m=64).

Programs

  • Magma
    I:=[0,16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    16*(2^Range[0,40] - 1) (* G. C. Greubel, Jul 08 2021 *)
  • Python
    def A175164(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(2*n) = A140504(n+2)*A028399(n).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)

A175166 a(n) = 64*(2^n - 1).

Original entry on oeis.org

0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), A175165 (m=32), this sequence (m=64).

Programs

  • Magma
    I:=[0,64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    LinearRecurrence[{3,-2},{0,64},30] (* Harvey P. Dale, Apr 08 2015 *)
  • Python
    def A175166(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(2*n) = A175161(n)*A159741(n) for n > 0.
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)

A175165 a(n) = 32*(2^n - 1).

Original entry on oeis.org

0, 32, 96, 224, 480, 992, 2016, 4064, 8160, 16352, 32736, 65504, 131040, 262112, 524256, 1048544, 2097120, 4194272, 8388576, 16777184, 33554400, 67108832, 134217696, 268435424, 536870880
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), this sequence (m=32), A175166 (m=64).
Cf. A173787.

Programs

  • Magma
    I:=[0,32]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    32(2^Range[0,30] -1) (* or *) LinearRecurrence[{3,-2},{0,32},30] (* Harvey P. Dale, Mar 23 2015 *)
  • Python
    def A175165(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [32*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+5) - 32.
a(n) = A173787(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=32. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 32*x/((1-x)*(1-2*x)).
E.g.f.: 32*(exp(2*x) - exp(x)). (End)

A204983 a(n) = 2^(k-1)-2^(j-1), where (2^(k-1),2^(j-1)) is the least pair of distinct positive powers of 2 for which n divides 2^(k-1)-2^(j-1).

Original entry on oeis.org

1, 2, 3, 4, 15, 6, 7, 8, 63, 30, 1023, 12, 4095, 14, 15, 16, 255, 126, 262143, 60, 63, 2046, 2047, 24, 1048575, 8190, 262143, 28, 268435455, 30, 31, 32, 1023, 510, 4095, 252, 68719476735, 524286, 4095, 120, 1048575, 126, 16383, 4092, 4095
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.
(Conjecture) Equivalently, the solution set of 2^p * (2^q - 1) = x * y, OR 2^q - 1 = 2^p * x * y, for at most one of the naturals x and y being given; unknown p and q in the integers; then a(n) = 2^p * (2^q - 1) where p and q are directly related to n (see formula). - Andrew T. Porter, Dec 20 2022

Crossrefs

Programs

  • Mathematica
    (See the program at A204979.)
  • PARI
    a(n) = for (k=1, oo, for (j=1, k-1, my(d=2^(k-1)-2^(j-1)); if (!(d % n), return(d)););); \\ Michel Marcus, Sep 16 2023

Formula

Conjecture: a(n) = 2^A007814(n) * (2^A007733(n) - 1). - Andrew T. Porter, Dec 20 2022
Previous Showing 11-19 of 19 results.