A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0
Examples
Triangle begins as: 2; 3, 4; 5, 6, 8; 9, 10, 12, 16; 17, 18, 20, 24, 32; 33, 34, 36, 40, 48, 64; 65, 66, 68, 72, 80, 96, 128; 129, 130, 132, 136, 144, 160, 192, 256; 257, 258, 260, 264, 272, 288, 320, 384, 512; 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024; 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025).
Programs
-
Magma
[2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
-
Mathematica
Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
-
PARI
A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
-
Python
from math import isqrt, comb def A173786(n): a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)) return (1<Chai Wah Wu, Jun 20 2025
-
Sage
flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
Formula
1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).
Extensions
Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010
A110286 a(n) = 15*2^n.
15, 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, 15360, 30720, 61440, 122880, 245760, 491520, 983040, 1966080, 3932160, 7864320, 15728640, 31457280, 62914560, 125829120, 251658240, 503316480, 1006632960, 2013265920, 4026531840, 8053063680, 16106127360
Offset: 0
Comments
The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..235
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
Programs
-
Magma
[15*2^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
-
Mathematica
15*2^Range[0, 60] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *) NestList[2#&,15,30] (* Harvey P. Dale, Oct 19 2014 *)
-
PARI
a(n)=15<
Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: 15/(1-2x). - Philippe Deléham, Nov 23 2008
a(n) = A173787(n+4,n). - Reinhard Zumkeller, Feb 28 2010
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
a(n) = 2*a(n-1) (with a(0)=15). - Vincenzo Librandi, Dec 26 2010
E.g.f.: 15*exp(2*x). - Stefano Spezia, May 15 2021
Extensions
Edited by Omar E. Pol, Dec 16 2008
A159741 a(n) = 8*(2^n - 1).
8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1
Comments
Fifth diagonal of the array which contains m-acci numbers in the m-th row.
The base array is constructed from m-acci numbers starting each with 1, 1, and 2 and filling one row of the table (see the examples).
The main and the upper diagonals of the table are the powers of 2, A000079.
The next subdiagonal is this sequence here, followed by A159742, A159743, A159744, A159746, A159747, A159748.
a(n) written in base 2: 1000, 11000, 111000, 1111000, ..., i.e., n times 1 and 3 times 0 (A161770). - Jaroslav Krizek, Jun 18 2009
Also numbers for which n^8/(n+8) is an integer. - Vicente Izquierdo Gomez, Jan 03 2013
Examples
From _R. J. Mathar_, Apr 22 2009: (Start) The base table is .1..1....1....1....1....1....1....1....1....1....1....1....1....1 .1..1....1....1....1....1....1....1....1....1....1....1....1....1 .2..2....2....2....2....2....2....2....2....2....2....2....2....2 .0..2....3....4....4....4....4....4....4....4....4....4....4....4 .0..2....5....7....8....8....8....8....8....8....8....8....8....8 .0..2....8...13...15...16...16...16...16...16...16...16...16...16 .0..2...13...24...29...31...32...32...32...32...32...32...32...32 .0..2...21...44...56...61...63...64...64...64...64...64...64...64 .0..2...34...81..108..120..125..127..128..128..128..128..128..128 .0..2...55..149..208..236..248..253..255..256..256..256..256..256 .0..2...89..274..401..464..492..504..509..511..512..512..512..512 .0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024 .0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048 .0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096 Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[8*(2^n -1): n in [1..50]]; // G. C. Greubel, May 22 2018
-
Maple
T := proc(n,m) option remember ; if n < 0 then 0; elif n <= 1 then 1; elif n = 2 then 2; else add(procname(n-i,m),i=1..m) ; fi: end: A159741 := proc(n) T(n+4,n+1) ; end: seq(A159741(n),n=1..40) ; # R. J. Mathar, Apr 22 2009
-
Mathematica
Table[8(2^n-1),{n,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *) LinearRecurrence[{3,-2},{8,24},30] (* Harvey P. Dale, Jan 01 2019 *)
-
PARI
a(n)=8*(2^n-1) \\ Charles R Greathouse IV, Sep 24 2015
Formula
From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
Extensions
More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009
A059153 a(n) = 2^(n+2)*(2^(n+1)-1).
4, 24, 112, 480, 1984, 8064, 32512, 130560, 523264, 2095104, 8384512, 33546240, 134201344, 536838144, 2147418112, 8589803520, 34359476224, 137438429184, 549754765312, 2199021158400, 8796088827904, 35184363700224, 140737471578112, 562949919866880
Offset: 0
Comments
A hierarchical sequence (S(W'2{2}c) - see A059126).
a(n) written in base 2: 100, 11000, 1110000, ..., i.e., (n+1) times 1 and (n+2) times 0 (see A163663). - Jaroslav Krizek, Aug 12 2009
Also, the number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 513", based on the 5-celled von Neumann neighborhood. - Robert Price, May 04 2016
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- J. Wallgren, Hierarchical sequences
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Mathematica
Table[2^(n + 2)*(2^(n + 1) - 1), {n, 0, 23}] (* and *) LinearRecurrence[{6, -8}, {4, 24}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
-
PARI
a(n) = { 2^(n + 2)*(2^(n + 1) - 1) } \\ Harry J. Smith, Jun 25 2009
Formula
From Colin Barker, Apr 28 2013: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: 4 / ((2*x-1)*(4*x-1)). (End)
a(n) = 2*A020522(n+1). - Hussam al-Homsi, Jun 06 2021
E.g.f.: 4*exp(2*x)*(2*exp(2*x) - 1). - Elmo R. Oliveira, Dec 10 2023
Extensions
Revised by Henry Bottomley, Jun 27 2005
A140513 Repeat 2^n n times.
2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0
Links
- Reinhard Zumkeller, Rows n = 0..127 of triangle, flattened
- Sajed Haque, Chapter 2.6.2 of Discriminators of Integer Sequences, 2017, See p. 34.
Programs
-
Haskell
a140513 n k = a140513_tabl !! (n-1) !! (k-1) a140513_row n = a140513_tabl !! (n-1) a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2] a140513_list = concat a140513_tabl -- Reinhard Zumkeller, Nov 14 2015
-
Mathematica
t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *) Table[Table[2^n,n],{n,10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
-
Python
from math import isqrt def A140513(n): return 1<<(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) # Chai Wah Wu, Nov 07 2024
Formula
a(n) = 2*A137688(n).
From Reinhard Zumkeller, Feb 28 2010: (Start)
Seen as a triangle read by rows: T(n,k)=2^n, 1 <= k <= n.
Sum_{n>=0} 1/a(n) = 2. - Amiram Eldar, Aug 16 2022
A175164 a(n) = 16*(2^n - 1).
0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[0,16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
16*(2^Range[0,40] - 1) (* G. C. Greubel, Jul 08 2021 *)
-
Python
def A175164(n): return (1<
Chai Wah Wu, Jun 27 2023 -
Sage
[16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)
A175166 a(n) = 64*(2^n - 1).
0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[0,64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
LinearRecurrence[{3,-2},{0,64},30] (* Harvey P. Dale, Apr 08 2015 *)
-
Python
def A175166(n): return (1<
Chai Wah Wu, Jun 27 2023 -
Sage
[64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)
A175165 a(n) = 32*(2^n - 1).
0, 32, 96, 224, 480, 992, 2016, 4064, 8160, 16352, 32736, 65504, 131040, 262112, 524256, 1048544, 2097120, 4194272, 8388576, 16777184, 33554400, 67108832, 134217696, 268435424, 536870880
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[0,32]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
32(2^Range[0,30] -1) (* or *) LinearRecurrence[{3,-2},{0,32},30] (* Harvey P. Dale, Mar 23 2015 *)
-
Python
def A175165(n): return (1<
Chai Wah Wu, Jun 27 2023 -
Sage
[32*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = 2^(n+5) - 32.
a(n) = A173787(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=32. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 32*x/((1-x)*(1-2*x)).
E.g.f.: 32*(exp(2*x) - exp(x)). (End)
A204983 a(n) = 2^(k-1)-2^(j-1), where (2^(k-1),2^(j-1)) is the least pair of distinct positive powers of 2 for which n divides 2^(k-1)-2^(j-1).
1, 2, 3, 4, 15, 6, 7, 8, 63, 30, 1023, 12, 4095, 14, 15, 16, 255, 126, 262143, 60, 63, 2046, 2047, 24, 1048575, 8190, 262143, 28, 268435455, 30, 31, 32, 1023, 510, 4095, 252, 68719476735, 524286, 4095, 120, 1048575, 126, 16383, 4092, 4095
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
(Conjecture) Equivalently, the solution set of 2^p * (2^q - 1) = x * y, OR 2^q - 1 = 2^p * x * y, for at most one of the naturals x and y being given; unknown p and q in the integers; then a(n) = 2^p * (2^q - 1) where p and q are directly related to n (see formula). - Andrew T. Porter, Dec 20 2022
Programs
-
Mathematica
(See the program at A204979.)
-
PARI
a(n) = for (k=1, oo, for (j=1, k-1, my(d=2^(k-1)-2^(j-1)); if (!(d % n), return(d)););); \\ Michel Marcus, Sep 16 2023
Comments