cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 85 results. Next

A379472 Composition of Blue code and bijective bit-reverse, in this order: a(n) = A057889(A193231(n)).

Original entry on oeis.org

0, 1, 3, 2, 5, 4, 6, 7, 15, 14, 12, 11, 10, 13, 9, 8, 17, 16, 18, 25, 20, 21, 29, 26, 30, 31, 23, 28, 27, 22, 24, 19, 51, 38, 48, 35, 54, 59, 43, 44, 60, 47, 63, 62, 39, 56, 46, 55, 34, 49, 33, 32, 57, 50, 36, 41, 45, 52, 58, 61, 40, 37, 53, 42, 85, 84, 106, 117, 80, 69, 101, 74, 90, 109, 77, 104, 125, 122, 116, 93
Offset: 0

Views

Author

Antti Karttunen, Dec 25 2024

Keywords

Crossrefs

Cf. A057889, A193231, A379471 (inverse permutation).

Programs

  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2)));
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    A379472(n) = A057889(A193231(n));

A268675 Self-inverse permutation of natural numbers: a(1) = 1; a(n) = A000079(A193231(A007814(n))) * A250469(a(A268674(n))).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 4, 21, 10, 11, 24, 13, 14, 15, 32, 17, 42, 19, 40, 9, 22, 23, 12, 55, 26, 27, 56, 29, 30, 31, 16, 69, 34, 35, 168, 37, 38, 39, 20, 41, 18, 43, 88, 93, 46, 47, 96, 91, 110, 123, 104, 53, 54, 25, 28, 117, 58, 59, 120, 61, 62, 63, 64, 65, 138, 67, 136, 33, 70, 71, 84, 73, 74, 75, 152, 77, 78, 79, 160
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2016

Keywords

Crossrefs

Formula

a(1) = 1, and for n > 1, a(n) = A000079(A193231(A007814(n))) * A250469(a(A268674(n))).
Other identities. For all n >= 1:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]
A020639(a(n)) = A020639(n). [More generally, it preserves the smallest prime dividing n.]
A055396(a(n)) = A055396(n).

A365810 Squareferee numbers ordered factorization-wise by Blue code: a(n) = A019565(A193231(n)).

Original entry on oeis.org

1, 2, 6, 3, 10, 5, 15, 30, 210, 105, 35, 70, 21, 42, 14, 7, 22, 11, 33, 66, 55, 110, 330, 165, 1155, 2310, 770, 385, 462, 231, 77, 154, 858, 429, 143, 286, 2145, 4290, 1430, 715, 5005, 10010, 30030, 15015, 2002, 1001, 3003, 6006, 39, 78, 26, 13, 390, 195, 65, 130, 910, 455, 1365, 2730, 91, 182, 546, 273, 1870, 935
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Crossrefs

Permutation of A005117.
Cf. also A366263.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    A365810(n) = A019565(A193231(n));

Formula

a(n) = A334205(A019565(n)).

A010060 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Named after Axel Thue, whose name is pronounced as if it were spelled "Tü" where the ü sound is roughly as in the German word üben. (It is incorrect to say "Too-ee" or "Too-eh".) - N. J. A. Sloane, Jun 12 2018
Also called the Thue-Morse infinite word, or the Morse-Hedlund sequence, or the parity sequence.
Fixed point of the morphism 0 --> 01, 1 --> 10, see example. - Joerg Arndt, Mar 12 2013
The sequence is cubefree (does not contain three consecutive identical blocks) [see Offner for a direct proof] and is overlap-free (does not contain XYXYX where X is 0 or 1 and Y is any string of 0's and 1's).
a(n) = "parity sequence" = parity of number of 1's in binary representation of n.
To construct the sequence: alternate blocks of 0's and 1's of successive lengths A003159(k) - A003159(k-1), k = 1, 2, 3, ... (A003159(0) = 0). Example: since the first seven differences of A003159 are 1, 2, 1, 1, 2, 2, 2, the sequence starts with 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0. - Emeric Deutsch, Jan 10 2003
Characteristic function of A000069 (odious numbers). - Ralf Stephan, Jun 20 2003
a(n) = S2(n) mod 2, where S2(n) = sum of digits of n, n in base-2 notation. There is a class of generalized Thue-Morse sequences: Let Sk(n) = sum of digits of n; n in base-k notation. Let F(t) be some arithmetic function. Then a(n)= F(Sk(n)) mod m is a generalized Thue-Morse sequence. The classical Thue-Morse sequence is the case k=2, m=2, F(t)= 1*t. - Ctibor O. Zizka, Feb 12 2008 (with correction from Daniel Hug, May 19 2017)
More generally, the partial sums of the generalized Thue-Morse sequences a(n) = F(Sk(n)) mod m are fractal, where Sk(n) is sum of digits of n, n in base k; F(t) is an arithmetic function; m integer. - Ctibor O. Zizka, Feb 25 2008
Starting with offset 1, = running sums mod 2 of the kneading sequence (A035263, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); also parity of A005187: (1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, ...). - Gary W. Adamson, Jun 15 2008
Generalized Thue-Morse sequences mod n (n>1) = the array shown in A141803. As n -> infinity the sequences -> (1, 2, 3, ...). - Gary W. Adamson, Jul 10 2008
The Thue-Morse sequence for N = 3 = A053838, (sum of digits of n in base 3, mod 3): (0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, ...) = A004128 mod 3. - Gary W. Adamson, Aug 24 2008
For all positive integers k, the subsequence a(0) to a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)) to a(2^(k+1)+2^(k-1)-1). That is to say, the first half of A_k is identical to the second half of B_k, and the second half of A_k is identical to the first quarter of B_{k+1}, which consists of the k/2 terms immediately following B_k.
Proof: The subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, is by definition formed from the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, by interchanging its 0's and 1's. In turn, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first half of A_k, which is by definition also A_{k-1}, by interchanging its 0's and 1's. Interchanging the 0's and 1's of a subsequence twice leaves it unchanged, so the subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, must be identical to the subsequence a(0) to a(2^(k-1)-1), the first half of A_k.
Also, the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first quarter of A_{k+1}, by interchanging its 0's and 1's. As noted above, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), which is by definition A_{k-1}, by interchanging its 0's and 1's, as well. If two subsequences are formed from the same subsequence by interchanging its 0's and 1's then they must be identical, so the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, must be identical to the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k.
Therefore the subsequence a(0), ..., a(2^(k-1)-1), a(2^(k-1)), ..., a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)), ..., a(2^(k+1)-1), a(2^(k+1)), ..., a(2^(k+1)+2^(k-1)-1), QED.
According to the German chess rules of 1929 a game of chess was drawn if the same sequence of moves was repeated three times consecutively. Euwe, see the references, proved that this rule could lead to infinite games. For his proof he reinvented the Thue-Morse sequence. - Johannes W. Meijer, Feb 04 2010
"Thue-Morse 0->01 & 1->10, at each stage append the previous with its complement. Start with 0, 1, 2, 3 and write them in binary. Next calculate the sum of the digits (mod 2) - that is divide the sum by 2 and use the remainder." Pickover, The Math Book.
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence, then prod(n >= 0, ((2*n+1)/(2*n+2))^epsilon(n) ) = 1/sqrt(2). - Jonathan Vos Post, Jun 06 2012
Dekking shows that the constant obtained by interpreting this sequence as a binary expansion is transcendental; see also "The Ubiquitous Prouhet-Thue-Morse Sequence". - Charles R Greathouse IV, Jul 23 2013
Drmota, Mauduit, and Rivat proved that the subsequence a(n^2) is normal--see A228039. - Jonathan Sondow, Sep 03 2013
Although the probability of a 0 or 1 is equal, guesses predicated on the latest bit seen produce a correct match 2 out of 3 times. - Bill McEachen, Mar 13 2015
From a(0) to a(2n+1), there are n+1 terms equal to 0 and n+1 terms equal to 1 (see Hassan Tarfaoui link, Concours Général 1990). - Bernard Schott, Jan 21 2022

Examples

			The evolution starting at 0 is:
  0
  0, 1
  0, 1, 1, 0
  0, 1, 1, 0, 1, 0, 0, 1
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
  .......
A_2 = 0 1 1 0, so B_2 = 1 0 0 1 and A_3 = A_2 B_2 = 0 1 1 0 1 0 0 1.
From _Joerg Arndt_, Mar 12 2013: (Start)
The first steps of the iterated substitution are
Start: 0
Rules:
  0 --> 01
  1 --> 10
-------------
0:   (#=1)
  0
1:   (#=2)
  01
2:   (#=4)
  0110
3:   (#=8)
  01101001
4:   (#=16)
  0110100110010110
5:   (#=32)
  01101001100101101001011001101001
6:   (#=64)
  0110100110010110100101100110100110010110011010010110100110010110
(End)
From _Omar E. Pol_, Oct 28 2013: (Start)
Written as an irregular triangle in which row lengths is A011782, the sequence begins:
  0;
  1;
  1,0;
  1,0,0,1;
  1,0,0,1,0,1,1,0;
  1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1;
  1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0;
It appears that: row j lists the first A011782(j) terms of A010059, with j >= 0; row sums give A166444 which is also 0 together with A011782; right border gives A000035.
(End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
  • Jason Bell, Michael Coons, and Eric Rowland, "The Rational-Transcendental Dichotomy of Mahler Functions", Journal of Integer Sequences, Vol. 16 (2013), #13.2.10.
  • J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
  • B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge, 2006, p. 224.
  • S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math., 24 (1989), 83-96. doi:10.1016/0166-218X(92)90274-E.
  • Yann Bugeaud and Guo-Niu Han, A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence, Electronic Journal of Combinatorics 21(3) (2014), #P3.26.
  • Y. Bugeaud and M. Queffélec, On Rational Approximation of the Binary Thue-Morse-Mahler Number, Journal of Integer Sequences, 16 (2013), #13.2.3.
  • Currie, James D. "Non-repetitive words: Ages and essences." Combinatorica 16.1 (1996): 19-40
  • Colin Defant, Anti-Power Prefixes of the Thue-Morse Word, Journal of Combinatorics, 24(1) (2017), #P1.32
  • F. M. Dekking, Transcendance du nombre de Thue-Morse, Comptes Rendus de l'Academie des Sciences de Paris 285 (1977), pp. 157-160.
  • F. M. Dekking, On repetitions of blocks in binary sequences. J. Combinatorial Theory Ser. A 20 (1976), no. 3, pp. 292-299. MR0429728(55 #2739)
  • Dekking, Michel, Michel Mendès France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts).
  • Dubickas, Artūras. On a sequence related to that of Thue-Morse and its applications. Discrete Math. 307 (2007), no. 9-10, 1082--1093. MR2292537 (2008b:11086).
  • Fabien Durand, Julien Leroy, and Gwenaël Richomme, "Do the Properties of an S-adic Representation Determine Factor Complexity?", Journal of Integer Sequences, Vol. 16 (2013), #13.2.6.
  • M. Euwe, Mengentheoretische Betrachtungen Über das Schachspiel, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Vol. 32 (5): 633-642, 1929.
  • S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.8.
  • W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
  • J. Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
  • A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
  • Mari Huova and Juhani Karhumäki, "On Unavoidability of k-abelian Squares in Pure Morphic Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.9.
  • B. Kitchens, Review of "Computational Ergodic Theory" by G. H. Choe, Bull. Amer. Math. Soc., 44 (2007), 147-155.
  • Le Breton, Xavier, Linear independence of automatic formal power series. Discrete Math. 306 (2006), no. 15, 1776-1780.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
  • Donald MacMurray, A mathematician gives an hour to chess, Chess Review 6 (No. 10, 1938), 238. [Discusses Marston's 1938 article]
  • Mauduit, Christian. Multiplicative properties of the Thue-Morse sequence. Period. Math. Hungar. 43 (2001), no. 1-2, 137--153. MR1830572 (2002i:11081)
  • C. A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning, Chapter 17, 'The Pipes of Papua,' Oxford University Press, Oxford, England, 2000, pages 34-38.
  • C. A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 316.
  • Narad Rampersad and Elise Vaslet, "On Highly Repetitive and Power Free Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.7.
  • G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • M. Rigo, P. Salimov, and E. Vandomme, "Some Properties of Abelian Return Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
  • Benoit Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0).
  • A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
  • Shallit, J. O. "On Infinite Products Associated with Sums of Digits." J. Number Th. 21, 128-134, 1985.
  • Ian Stewart, "Feedback", Mathematical Recreations Column, Scientific American, 274 (No. 3, 1996), page 109 [Historical notes on this sequence]
  • Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin-Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. .
  • A. Thue. Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.
  • A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 1 (1912), 1-67.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 890.

Crossrefs

Cf. A001285 (for 1, 2 version), A010059 (for 1, 0 version), A106400 (for +1, -1 version), A048707. A010060(n)=A000120(n) mod 2.
Cf. A007413, A080813, A080814, A036581, A108694. See also the Thue (or Roth) constant A014578, also A014571.
Run lengths give A026465. Backward first differences give A029883.
Cf. A004128, A053838, A059448, A171900, A161916, A214212, A005942 (subword complexity), A010693 (Abelian complexity), A225186 (squares), A228039 (a(n^2)), A282317.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Haskell
    a010060 n = a010060_list !! n
    a010060_list =
       0 : interleave (complement a010060_list) (tail a010060_list)
       where complement = map (1 - )
             interleave (x:xs) ys = x : interleave ys xs
    -- Doug McIlroy (doug(AT)cs.dartmouth.edu), Jun 29 2003
    -- Edited by Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    s := proc(k) local i, ans; ans := [ 0,1 ]; for i from 0 to k do ans := [ op(ans),op(map(n->(n+1) mod 2, ans)) ] od; return ans; end; t1 := s(6); A010060 := n->t1[n]; # s(k) gives first 2^(k+2) terms.
    a := proc(k) b := [0]: for n from 1 to k do b := subs({0=[0,1], 1=[1,0]},b) od: b; end; # a(k), after the removal of the brackets, gives the first 2^k terms. # Example: a(3); gives [[[[0, 1], [1, 0]], [[1, 0], [0, 1]]]]
    A010060:=proc(n)
        add(i,i=convert(n, base, 2)) mod 2 ;
    end proc:
    seq(A010060(n),n=0..104); # Emeric Deutsch, Mar 19 2005
    map(`-`,convert(StringTools[ThueMorse](1000),bytes),48); # Robert Israel, Sep 22 2014
  • Mathematica
    Table[ If[ OddQ[ Count[ IntegerDigits[n, 2], 1]], 1, 0], {n, 0, 100}];
    mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt] ], {n, 0, 6} ]; Prepend[ RealDigits[ N[ ToExpression[mt], 2^7] ] [ [1] ], 0]
    Mod[ Count[ #, 1 ]& /@Table[ IntegerDigits[ i, 2 ], {i, 0, 2^7 - 1} ], 2 ] (* Harlan J. Brothers, Feb 05 2005 *)
    Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v Sep 26 2006 *)
    a[n_] := If[n == 0, 0, If[Mod[n, 2] == 0, a[n/2], 1 - a[(n - 1)/2]]] (* Ben Branman, Oct 22 2010 *)
    a[n_] := Mod[Length[FixedPointList[BitAnd[#, # - 1] &, n]], 2] (* Jan Mangaldan, Jul 23 2015 *)
    Table[2/3 (1 - Cos[Pi/3 (n - Sum[(-1)^Binomial[n, k], {k, 1, n}])]), {n, 0, 100}] (* or, for version 10.2 or higher *) Table[ThueMorse[n], {n, 0, 100}] (* Vladimir Reshetnikov, May 06 2016 *)
    ThueMorse[Range[0, 100]] (* The program uses the ThueMorse function from Mathematica version 11 *) (* Harvey P. Dale, Aug 11 2016 *)
    Nest[Join[#, 1 - #] &, {0}, 7] (* Paolo Xausa, Oct 25 2024 *)
  • PARI
    a(n)=if(n<1,0,sum(k=0,length(binary(n))-1,bittest(n,k))%2)
    
  • PARI
    a(n)=if(n<1,0,subst(Pol(binary(n)), x,1)%2)
    
  • PARI
    default(realprecision, 6100); x=0.0; m=20080; for (n=1, m-1, x=x+x; x=x+sum(k=0, length(binary(n))-1, bittest(n, k))%2); x=2*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*2; write("b010060.txt", n, " ", d)); \\ Harry J. Smith, Apr 28 2009
    
  • PARI
    a(n)=hammingweight(n)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    A010060_list = [0]
    for _ in range(14):
        A010060_list += [1-d for d in A010060_list] # Chai Wah Wu, Mar 04 2016
    
  • Python
    def A010060(n): return n.bit_count()&1 # Chai Wah Wu, Mar 01 2023
    
  • R
    maxrow <- 8 # by choice
    b01 <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
    b01[2^(m+1)+    k] <-   b01[2^m+k]
    b01[2^(m+1)+2^m+k] <- 1-b01[2^m+k]
    }
    (b01 <- c(0,b01))
    # Yosu Yurramendi, Apr 10 2017

Formula

a(2n) = a(n), a(2n+1) = 1 - a(n), a(0) = 0. Also, a(k+2^m) = 1 - a(k) if 0 <= k < 2^m.
If n = Sum b_i*2^i is the binary expansion of n then a(n) = Sum b_i (mod 2).
Let S(0) = 0 and for k >= 1, construct S(k) from S(k-1) by mapping 0 -> 01 and 1 -> 10; sequence is S(infinity).
G.f.: (1/(1 - x) - Product_{k >= 0} (1 - x^(2^k)))/2. - Benoit Cloitre, Apr 23 2003
a(0) = 0, a(n) = (n + a(floor(n/2))) mod 2; also a(0) = 0, a(n) = (n - a(floor(n/2))) mod 2. - Benoit Cloitre, Dec 10 2003
a(n) = -1 + (Sum_{k=0..n} binomial(n,k) mod 2) mod 3 = -1 + A001316(n) mod 3. - Benoit Cloitre, May 09 2004
Let b(1) = 1 and b(n) = b(ceiling(n/2)) - b(floor(n/2)) then a(n-1) = (1/2)*(1 - b(2n-1)). - Benoit Cloitre, Apr 26 2005
a(n) = 1 - A010059(n) = A001285(n) - 1. - Ralf Stephan, Jun 20 2003
a(n) = A001969(n) - 2n. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A115384(n) - A115384(n-1) for n > 0. - Reinhard Zumkeller, Aug 26 2007
For n >= 0, a(A004760(n+1)) = 1 - a(n). - Vladimir Shevelev, Apr 25 2009
a(A160217(n)) = 1 - a(n). - Vladimir Shevelev, May 05 2009
a(n) == A000069(n) (mod 2). - Robert G. Wilson v, Jan 18 2012
a(n) = A000035(A000120(n)). - Omar E. Pol, Oct 26 2013
a(n) = A000035(A193231(n)). - Antti Karttunen, Dec 27 2013
a(n) + A181155(n-1) = 2n for n >= 1. - Clark Kimberling, Oct 06 2014
G.f. A(x) satisfies: A(x) = x / (1 - x^2) + (1 - x) * A(x^2). - Ilya Gutkovskiy, Jul 29 2021
From Bernard Schott, Jan 21 2022: (Start)
a(n) = a(n*2^k) for k >= 0.
a((2^m-1)^2) = (1-(-1)^m)/2 (see Hassan Tarfaoui link, Concours Général 1990). (End)

A001317 Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 4294967297, 12884901891, 21474836485, 64424509455, 73014444049, 219043332147, 365072220245, 1095216660735, 1103806595329, 3311419785987
Offset: 0

Views

Author

Keywords

Comments

The members are all palindromic in binary, i.e., a subset of A006995. - Ralf Stephan, Sep 28 2004
J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - N. J. A. Sloane, Jun 15 2015]
Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - Eric W. Weisstein, Apr 08 2006
Limit_{n->oo} log(a(n))/n = log(2). - Bret Mulvey, May 17 2008
Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - Gary W. Adamson, Oct 16 2009
Equals row sums of triangle A166555. - Gary W. Adamson, Oct 17 2009
For n >= 1, all terms are in A001969. - Vladimir Shevelev, Oct 25 2010
Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - Vladimir Shevelev, Nov 28 2010
Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - Vladimir Shevelev, Nov 29 2010
Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - Vladimir Shevelev, Jan 02 2011
Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - Joerg Arndt, Jan 07 2011
This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as
1111111...
10101010...
11001100...
10001000...
we get (taking the period part in each row):
.(1) (base 2) = 1
.(10) = 2/3
.(1100) = 12/15 = 4/5
.(1000) = 8/15
The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - Katarzyna Matylla, Mar 12 2011
From Daniel Forgues, Jun 16-18 2011: (Start)
Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.
It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):
a(0)=1 (empty product) are products of distinct Fermat numbers in { };
a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.
Thus for n >= 1, 0 <= k <= 2^n - 1, and
a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},
this implies
a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.
(Cf. OEIS Wiki links below.) (End)
The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - Antti Karttunen, Feb 10 2016

Examples

			Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.
From _Daniel Forgues_, Jun 18 2011: (Start)
  a(0) = 1 (empty product);
  a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;
  a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;
  a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;
  a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;
  a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;
  a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;
  a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;
  ... (End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.
  • Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.

Crossrefs

Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).
Iterates of A048724 (starting from 1).
Row 3 of A048723.
Positions of records in A268389.
Positions of ones in A268669 and A268384 (characteristic function).
Not the same as A045544 nor as A053576.
Cf. A045544.

Programs

  • Haskell
    a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row
    -- Reinhard Zumkeller, Nov 24 2012
    (Scheme, with memoization-macro definec, two variants)
    (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))
    (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.
    ;; Antti Karttunen, Feb 10 2016
    
  • Magma
    [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
    
  • Maple
    A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;
  • Mathematica
    a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)
    NestList[BitXor[#,2#]&,1,50] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)
    
  • PARI
    a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ Joerg Arndt, Mar 27 2013
    
  • PARI
    A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ M. F. Hasler, Jun 06 2016
    
  • PARI
    a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
    
  • Python
    from sympy import binomial
    def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
    
  • Python
    def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # Chai Wah Wu, Feb 04 2022

Formula

a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - Paul D. Hanna, Apr 27 2003
a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and Ralf Stephan, Sep 28 2004
a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - Bret Mulvey, May 17 2008
For n >= 1, A000120(a(n)) = 2^A000120(n). - Vladimir Shevelev, Oct 25 2010
a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,
a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - Vladimir Shevelev, Nov 28 2010
Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);
Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).
If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - Vladimir Shevelev, Nov 29 2010
G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by Shamil Shakirov, proved by Vladimir Shevelev
a(n) = A000225(n+1) - A219843(n). - Reinhard Zumkeller, Nov 30 2012
From Antti Karttunen, Feb 10 2016: (Start)
a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).
a(n) = A048723(3,n).
a(n) = A193231(A000079(n)).
For all n >= 0: A268389(a(n)) = n.
(End)

A057889 Bijective bit-reverse of n: keep the trailing zeros in the binary expansion of n fixed, but reverse all the digits up to that point.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14, 15, 16, 17, 18, 25, 20, 21, 26, 29, 24, 19, 22, 27, 28, 23, 30, 31, 32, 33, 34, 49, 36, 41, 50, 57, 40, 37, 42, 53, 52, 45, 58, 61, 48, 35, 38, 51, 44, 43, 54, 59, 56, 39, 46, 55, 60, 47, 62, 63, 64, 65, 66, 97, 68, 81, 98, 113
Offset: 0

Views

Author

Marc LeBrun, Sep 25 2000

Keywords

Comments

The original name was "Bit-reverse of n, including as many leading as trailing zeros." - Antti Karttunen, Dec 25 2024
A permutation of integers consisting only of fixed points and pairs. a(n)=n when n is a binary palindrome (including as many leading as trailing zeros), otherwise a(n)=A003010(n) (i.e. n has no axis of symmetry). A057890 gives the palindromes (fixed points, akin to A006995) while A057891 gives the "antidromes" (pairs). See also A280505.
This is multiplicative in domain GF(2)[X], i.e. with carryless binary arithmetic. A193231 is another such permutation of natural numbers. - Antti Karttunen, Dec 25 2024

Examples

			a(6)=6 because 0110 is a palindrome, but a(11)=13 because 1011 reverses into 1101.
		

Crossrefs

Cf. A030101, A000265, A006519, A006995, A057890, A057891, A280505, A280508, A331166 [= min(n,a(n))], A366378 [k for which a(k) = k (mod 3)], A369044 [= A014963(a(n))].
Similar permutations for other bases: A263273 (base-3), A264994 (base-4), A264995 (base-5), A264979 (base-9).
Other related (binary) permutations: A056539, A193231.
Compositions of this permutation with other binary (or other base-related) permutations: A264965, A264966, A265329, A265369, A379471, A379472.
Compositions with permutations involving prime factorization: A245450, A245453, A266402, A266404, A293448, A366275, A366276.
Other derived permutations: A246200 [= a(3*n)/3], A266351, A302027, A302028, A345201, A356331, A356332, A356759, A366389.
See also A235027 (which is not a permutation).

Programs

  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n, 2]], 2]*2^IntegerExponent[n, 2], {n, 71}] (* Ivan Neretin, Jul 09 2015 *)
  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); \\ Antti Karttunen, Dec 25 2024
  • Python
    def a(n):
        x = bin(n)[2:]
        y = x[::-1]
        return int(str(int(y))+(len(x) - len(str(int(y))))*'0', 2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 11 2017
    
  • Python
    def A057889(n): return int(bin(n>>(m:=(~n&n-1).bit_length()))[-1:1:-1],2)<Chai Wah Wu, Dec 25 2024
    

Formula

a(n) = A030101(A000265(n)) * A006519(n), with a(0)=0.

Extensions

Clarified the name with May 30 2016 comment from N. J. A. Sloane, and moved the old name to the comments - Antti Karttunen, Dec 25 2024

A091242 Reducible polynomials over GF(2), coded in binary.

Original entry on oeis.org

4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1). - M. F. Hasler, Aug 18 2014
The reducible polynomials in GF(2)[X] are the analog to the composite numbers A002808 in the integers.
It follows that the sequence is closed under application of A048720(.,.), which effects multiplication of the coded polynomials. It is also closed under application of blue code, A193231. The majority of the terms are coded multiples of X^1 (represented by 2) and/or X^1+1 (represented by 3): see A005843 and A001969 respectively. A246157 lists the other terms. - Peter Munn, Apr 20 2021

Examples

			For example, 5 = 101 in binary encodes the polynomial x^2+1 which is factored as (x+1)^2 in the polynomial ring GF(2)[X].
		

Crossrefs

Inverse: A091246. Almost complement of A014580. Union of A091209 & A091212. First differences: A091243. Characteristic function: A091247. In binary format: A091254.
Number of degree-n reducible polynomials: A058766.
Subsequences: A001969\{0,3}, A005843\{0,2}, A246156, A246157, A246158, A316970.

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(n,base,2);
      not Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2
    end proc:
    select(filter, [$2..200]); # Robert Israel, Aug 30 2018
  • Mathematica
    okQ[n_] := Module[{x, id = IntegerDigits[n, 2] // Reverse}, !IrreduciblePolynomialQ[id.x^Range[0, Length[id]-1], Modulus -> 2]];
    Select[Range[2, 200], okQ] (* Jean-François Alcover, Jan 04 2022 *)

Extensions

Edited by M. F. Hasler, Aug 18 2014

A099884 XOR difference triangle of the powers of 2, read by rows; Square array A(row,col): A(0,col) = 2^col, A(row,col) = A048724(A(row-1, col)) for row > 0, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 15, 16, 24, 20, 30, 17, 32, 48, 40, 60, 34, 51, 64, 96, 80, 120, 68, 102, 85, 128, 192, 160, 240, 136, 204, 170, 255, 256, 384, 320, 480, 272, 408, 340, 510, 257, 512, 768, 640, 960, 544, 816, 680, 1020, 514, 771, 1024, 1536, 1280, 1920
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

Define an "XOR difference triangle" for a sequence A by the following process. Start with A in the leftmost column. Generate the next column by performing the XOR operation between adjacent terms of the prior column. Repeat this process to generate the XOR difference triangle for A. Further, we define the "XOR BINOMIAL transform" of A as the main diagonal in the XOR difference triangle for A. The XOR BINOMIAL transform is its self-inverse. Let a sequence B be the XOR BINOMIAL transform of A, then we may express B by: B(n) = SumXOR_{k=0..n} A047999(n,k)*A(k), which is equivalent to: B(n) = (C(n,0)mod 2)*A(0) XOR (C(n,1)mod 2)*A(1) XOR (C(n,2)mod 2)*A(2) XOR ... XOR (X(n,n)mod 2)*A(n), where the coefficients are C(n,k)(mod 2) = A047999(n,k).
This sequence is a rearrangement of the numbers which are 2^k times distinct Fermat numbers (numbers of the form 2^(2^m) + 1). This matches the sizes of polygons constructible with compass and straightedge (A003401) up to 2^32+1, which is the first nonprime Fermat number. - Franklin T. Adams-Watters, Jun 16 2006

Examples

			The main diagonal equals A001317 (Pascal's triangle mod 2 in decimal):
{1,3,5,15,17,51,85,255,257,771,1285,3855,...}, and defines the XOR BINOMIAL transform of the powers of 2.
Rows begin:
  1;
  2, 3;
  4, 6, 5;
  8, 12, 10, 15;
  16, 24, 20, 30, 17;
  32, 48, 40, 60, 34, 51;
  64, 96, 80, 120, 68, 102, 85;
  128, 192, 160, 240, 136, 204, 170, 255;
  256, 384, 320, 480, 272, 408, 340, 510, 257;
  512, 768, 640, 960, 544, 816, 680, 1020, 514, 771;
  1024, 1536, 1280, 1920, 1088, 1632, 1360, 2040, 1028, 1542, 1285;
  2048, 3072, 2560, 3840, 2176, 3264, 2720, 4080, 2056, 3084, 2570, 3855;
  ...
From _Antti Karttunen_, Sep 19 2016: (Start)
Viewed as a square array, the top left corner looks like this:
     1,    2,     4,     8,    16,     32,     64,    128
     3,    6,    12,    24,    48,     96,    192,    384
     5,   10,    20,    40,    80,    160,    320,    640
    15,   30,    60,   120,   240,    480,    960,   1920
    17,   34,    68,   136,   272,    544,   1088,   2176
    51,  102,   204,   408,   816,   1632,   3264,   6528
    85,  170,   340,   680,  1360,   2720,   5440,  10880
   255,  510,  1020,  2040,  4080,   8160,  16320,  32640
   257,  514,  1028,  2056,  4112,   8224,  16448,  32896
   771, 1542,  3084,  6168, 12336,  24672,  49344,  98688
  1285, 2570,  5140, 10280, 20560,  41120,  82240, 164480
  3855, 7710, 15420, 30840, 61680, 123360, 246720, 493440
  4369, 8738, 17476, 34952, 69904, 139808, 279616, 559232
  ...
(End)
The square array shown above can be viewed as a subtable of a multiplication table with particular relevance to the carryless multiplication defined by A048720, as the first column gives the A048720 powers of 3 (and the first row gives powers of 2, which are the same as in standard arithmetic). - _Peter Munn_, Jan 13 2020
		

Crossrefs

Essentially GF(2)[X] analog of table A036561. - Antti Karttunen, Jan 18 2020
Cf. A047999, A158875 (row sums).
Cf. A000079 (first column of triangular table, the topmost row of square array).
Cf. A001317 (the rightmost diagonal of triangular table, the leftmost column of square array).
Cf. A099885, A117998 (central diagonals).
Cf. A276618 (transpose), A091202, A193231.

Programs

  • Mathematica
    a[n_]:= Sum[Mod[Binomial[n, i], 2]*2^i, {i, 0, n}]; T[n_, k_]:=2^(n - k)a[k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    {T(n,k)=local(B);B=0;for(i=0,k,B=bitxor(B,binomial(k,i)%2*2^(n-i)));B}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Python
    from sympy import binomial
    def a(n):
        return sum((binomial(n, i)%2)*2**i for i in range(n + 1))
    def T(n, k): return 2**(n - k)*a(k)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A099884 n) (A099884bi (A002262 n) (A025581 n)))
    ;; Then use either this recurrence:
    (define (A099884bi row col) (if (zero? row) (A000079 col) (A048724 (A099884bi (- row 1) col))))
    ;; or this one:
    (define (A099884bi row col) (if (zero? col) (A001317 row) (* 2 (A099884bi row (- col 1)))))
    ;; Antti Karttunen, Sep 19 2016
    

Formula

T(n, k) = 2^(n-k)*A001317(k). T(n, n) = A001317(n) = SumXOR_{k=0..n} A047999(n, k)*2^k, where SumXOR is the analog of summation under the binary XOR operation.
From Antti Karttunen, Sep 19 2016: (Start)
When viewed as a square array A(row,col), with row >= 0, col >= 0, the following recurrences and formulas are valid:
A(0,col) = A000079(col), for row > 0, A(row,col) = A048724(A(row-1, col)).
A(row,0) = A001317(row), for col > 0, A(row,col) = 2*A(row,col-1).
A(row,col) = A248663(A066117(row+1,col+1)) = A048675(A255483(row,col+1)).
(End)
With the definitions from Antti Karttunen above, A(row+1, col) = A048720(3, A(row, col)). - Peter Munn, Jan 13 2020
A(n,k) = A193231(A(k,n)) = A091202(A036561(n,k)). - Antti Karttunen, Jan 18 2020

Extensions

Square array interpretation added as a second, alternative description by Antti Karttunen, Sep 19 2016

A278233 Filter-sequence for GF(2)[X]-factorization: sequence that gives the least natural number with the same prime signature that (0, 1)-polynomial encoded in the binary expansion of n has when it is factored over GF(2).

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 2, 8, 6, 12, 2, 12, 2, 6, 8, 16, 16, 30, 2, 36, 4, 6, 6, 24, 2, 6, 12, 12, 6, 24, 2, 32, 6, 48, 6, 60, 2, 6, 12, 72, 2, 12, 6, 12, 24, 30, 2, 48, 6, 6, 32, 12, 6, 60, 2, 24, 12, 30, 2, 72, 2, 6, 12, 64, 36, 30, 2, 144, 4, 30, 6, 120, 2, 6, 24, 12, 6, 60, 6, 144, 4, 6, 30, 36, 64, 30, 2, 24, 6, 120, 2, 60, 6, 6, 12, 96, 2, 30, 12, 12, 30, 96, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

a(n) = the least number with the same prime signature as A091203(n).
This sequence works as an A046523-analog in the polynomial ring GF(2)[X] and can be used as a filter which matches with (and thus detects) any sequence in the database where a(n) depends only on the exponents of irreducible factors when the polynomial corresponding to n (via base-2 encoding) is factored over GF(2). These sequences are listed in the Crossrefs section, "Sequences that partition N into ...".
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Examples

			3 is "11" in binary, encodes polynomial x + 1, and 7 is "111" in binary, encodes polynomial x^2 + x + 1, both which are irreducible over GF(2). We can multiply their codes with carryless multiplication A048720 as A048720(3,7) = 9, A048720(9,3) = 27, A048720(9,7) = 63. Now a(27) = a(63) because the exponents occurring in both codes 27 and 63 are one 1 and two 2's, and their order is not significant when computing prime signature. Moreover a(27) = a(63) = 12 because that is the least number with a prime signature (1,2) in the more familiar domain of natural numbers.
a(25) = 2, because 25 is "11001" in binary, encoding polynomial x^4 + x^3 + 1, which is irreducible in the ring GF(2)[X], i.e., 25 is in A014580, whose initial term is 2.
		

Crossrefs

Cf. A014580 (gives the positions of 2's), A048720, A057889, A091203, A091205, A193231, A235042, A278231, A278238, A278239.
Similar filtering sequences: A046523, A278222, A278226, A278236, A278243.
Sequences that partition N into same or coarser equivalence classes: A091220, A091221, A091222, A106493, A106494.
Cf. also A304529, A304751, A305788 (rgs-transform), A305789.

Programs

Formula

a(n) = A046523(A091203(n)) = A046523(A091205(n)) = A046523(A235042(n)). [Because of the "sorting" essentially performed by A046523, any map from GF(2)[X] to Z can be used, as long as it is fully (cross-)multiplicative and preserves also the exponents intact.]
Other identities. For all n >= 1:
a(A014580(n)) = 2.
a(n) = a(A057889(n)) = a(A193231(n)).
a(A000695(n)) = A278238(n).
a(A277699(n)) = A278239(n).

A368900 LCM-transform of Doudna sequence.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 3, 2, 7, 1, 1, 1, 5, 1, 3, 2, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Let's define "property S" for sequences as follows: If s is any sequence of positive natural numbers, normalized to begin with offset 1, then it satisfies the S-property if LCM-transform(s) is equal to the sequence obtained by applying A014963 to sequence s, or in other words, when for all n >= 1, lcm {s(1)..s(n)} / lcm {s(1)..s(n-1)} = A014963(s(n)). This holds if and only if, for all n >= 1, when, either (case A): s(n) is of the form p^k, p prime, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to p^(k-1), or (case B): when s(n) is not a prime power, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to s(n). Together the cases (A) and (B) reduce to the condition that each prime power should appear in s before any of its multiples do.
Clearly the Doudna-sequence satisfies the property by the way of its construction, as do many of its variants like A356867 (see A369060).
Also, for any base-2 related permutation b that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., if for all n >= 1, A000523(b(n)) = A000523(n), then the above property is automatically satisfied.
Furthermore, because in Doudna-sequence no multiple of any term is located on the same row as the term itself (see the tree-illustration in A005940), it follows that any composition of A005940 with any such base-2 related permutation as mentioned above also automatically satisfies the S-property, for example, the permutations A163511, A243353, A253563, A253565, A366260, A366263 and A366275.
Note: Like A005940 itself, also this sequence might be more logical with the starting offset 0 instead of 1, to better align with the underlying mapping from the binary expansion of n to the prime factorization. - Antti Karttunen, Jan 24 2024

Crossrefs

List of LCM-transforms of permutations (permutation given in parentheses):
Cf. A265576 (A064413; note that the EKG sequence permutation does not satisfy the S-property).
In all following cases, the permutation satisfies the S-property:
Cf. A369041 (A003188), A369042 (A006068), A369043 (A193231), A369044 (A057889), A369041 (A054429). [Base-2 related permutations]
Other permutations that have the same property: A303767, (and when used as an offset=1 sequence): A052330.

Programs

  • Mathematica
    nn = 120; Array[Set[{s[#], a[#]}, {#, #}] &, 2]; j = 2;
    Do[If[EvenQ[n],
      Set[s[n], 2 s[n/2]],
      Set[s[n],
        Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &,
          FactorInteger[s[(n + 1)/2]]]]];
      k = LCM[j, s[n]]; a[n] = k/j; j = k, {n, 3, nn}];
    Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 16384;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t) };
    v368900 = LCMtransform(vector(up_to,i,A005940(i)));
    A368900(n) = v368900[n];
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A209229(n) = (n && !bitand(n,n-1));
    A368900(n)  = if(1==n, 1, my(x=A000265(n-1)); if(A209229(1+x), prime(1+valuation(n-1,2)), 1));

Formula

a(n) = A368901(n) / A368901(n-1) = lcm {1..A005940(n)} / lcm {1..A005940(n-1)}.
a(n) = A005940(n) / gcd(A005940(n), A368901(n-1)).
a(n) = A014963(A005940(n)). [Because A005940 satisfies the property given in the comments]
For n >= 1, Product_{d|n} a(A005941(d)) = n. [Implied by above]
For n >= 1, a(n) = A369030(1+A054429(n-1)).
For n > 1, if n-1 is a number of the form 2^i - 2^j with i >= j, then a(n) = prime(1+j), otherwise a(n) = 1.
Previous Showing 41-50 of 85 results. Next