cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A127677 Scaled coefficient table for Chebyshev polynomials 2*T(2*n, sqrt(x)/2) (increasing even scaled powers, without zero entries).

Original entry on oeis.org

2, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2007

Keywords

Comments

2*T(2*n,x) = Sum_{m=0..n} a(n,m)*(2*x)^(2*m).
Closely related to A284982, which has opposite signs and rows begin with 0 of alternating signs instead of +/2. - Eric W. Weisstein, Apr 07 2017
Bisection triangle of A127672 (without zero entries, even part). The odd part is ((-1)^(n-m))*A111125(n,m).
If the leading 2 is replaced by a 1 we get the essentially identical sequence A110162. - N. J. A. Sloane, Jun 09 2007
Also row n gives coefficients of characteristic polynomial of the Cartan matrix for the root system B_n (or, equally, C_n). - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Oct 04 2013: (Start)
This triangle a(n,m) is used to express the length ratio side/R given by s(4*n+2) = 2*sin(Pi/(4*n+2)) = 2*cos(2*n*Pi/(4*n+2)) in a regular (4*n+2)-gon, inscribed in a circle with radius R, in terms of rho(4*n+2) = 2*cos(Pi/4*n+2), the length ratio of (the smallest diagonal)/side (for n=2 there is no such diagonal).
s(4*n+2) = Sum_{m=0..n}a(n,m)*rho(4*n+2)^(2*m). This formula is needed to show that the total sum of all length ratios in a (4*n+2)-gon is an integer in the algebraic number field Q(rho(4*n+2)). Note that rho(4*n+2) has degree delta(4*n+2) = A055034(4*n+2). Therefore one has to take s(4*n+2) modulo C(4*n+2, x=rho(4*n+2)), the minimal polynomial of rho(4*n+2) (see A187360). Thanks go to Seppo Mustonen for asking me to look into this problem. See ((-1)^(n-m))*A111125(n,m) for the (4*n)-gon situation. (End)

Examples

			The triangle a(n,m) starts:
n\m  0    1    2     3     4     5     6     7    8   9  10 ...
0:   2
1:  -2    1
2:   2   -4    1
3:  -2    9   -6     1
4:   2  -16   20    -8     1
5:  -2   25  -50    35   -10     1
6:   2  -36  105  -112    54   -12     1
7:  -2   49 -196   294  -210    77   -14     1
8:   2  -64  336  -672   660  -352   104   -16    1
9:  -2   81 -540  1386 -1782  1287  -546   135  -18   1
10:  2 -100  825 -2640  4290 -4004  2275  -800  170 -20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 21 2012.
n=3: [-2,9,-6,1] stands for -2*1 + 9*(2*x)^2 -6*(2*x)^4 +1*(2*x)^6 = 2*(1+18*x^2-48*x^4+32*x^6) = 2*T(6,x).
(4*n+2)-gon side/radius s(4*n+2) as polynomial in rho(4*n+2) = smallest diagonal/side: n=0: s(2) = 2 (rho(2)=0); n=1: s(6) = -2 + rho(6)^2 = -2 + 3 = 1, (C(6,x) = x^2 - 3); n=2: s(10) = 2 - 4*rho(10)^2 + 1*rho(10)^4 = 2 - 4*rho(10)^2 + (5*rho(10)^2 - 5) = -3 + rho(10)^2, (C(10,x) = x^4 - 5*x^2 + 5). - _Wolfdieter Lang_, Oct 04 2013
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62
  • Sigurdur Helgasson,Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978,p. 463.

Crossrefs

Cf. A284982 (opposite signs and rows begin with 0).
Row sums (signed): -A061347(n+3) for n>=0.
Row sums (unsigned): A005248(n) = L(2*n), where L=Lucas.

Programs

  • Mathematica
    T[n_, m_, d_] := If[ n == m, 2, If[n == d && m == d - 1, -2, If[(n == m - 1 || n == m + 1), -1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] a = Join[M[1], Table[CoefficientList[CharacteristicPolynomial[M[d], x], x], {d, 1, 10} ]] (* Roger L. Bagula, May 23 2007 *)
    CoefficientList[2 ChebyshevT[2 Range[0, 10], Sqrt[x]/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-1)^n LucasL[2 n, Sqrt[-x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    a(n,m) = {if(n>=2, -2*a(n-1,m)+a(n-1,m-1)-a(n-2,m), if(n==0, if(m!=0,0,2), if(m==0,-2, if(m==1,1,0))))};
    for(n=0,10,for(m=0,n,print1(a(n,m),", "))) \\ Hugo Pfoertner, Jul 19 2020

Formula

a(n,m) = 0 if n < m; a(n,0) = 2*(-1)^n; a(n,m) = ((-1)^(n+m))*n*binomial(n+m-1, 2*m-1)/m.
a(n,m) = 0 if n < m, a(0,0) = 2, a(n,m) = (-1)^(n-m)*(2*n/(n+m))*binomial(n+m, n-m), n >= 1. From Waring's formula applied to Chebyshev's T-polynomials. See also A110162. - Wolfdieter Lang, Nov 21 2012
The o.g.f. Sum_{n>=0} p(n,x)*z^n, n>=0, for the row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m is (2 + z*(2-x))/((z+1)^2 - z*x). Here p(n,x) = R(2*n,sqrt(x)) := 2*T(2*n,sqrt(x)/2) with Chebyshev's T-polynomials. For the R-polynomials see A127672. - Wolfdieter Lang, Nov 28 2012
From Tom Copeland, Nov 07 2015: (Start)
A logarithmic generator is 2*(1-log(1+x))-log(1-t*x/(1+x)^2) = 2 - log(1+(2-t)*x+x^2) = 2 + (-2 + t)*x + (2 - 4*t + t^2) x^2/2 + (-2 + 9*t - 6*t^2 + t^3) x^3/3 + ..., so a number of relations to the Faber polynomials of A263916 hold with p(0,x) = 2:
1) p(n,x) = F(n,(2-x),1,0,0,..)
2) p(n,x) = (-1)^n 2 + F(n,-x,2x,-3x,...,(-1)^n n*x)
3) p(n,x) = (-1)^n [2 + F(n,x,2x,3x,...,n*x)].
The unsigned array contains the partial sums of A111125 modified by appending a column of zeros, except for an initial two, to A111125. Then the difference of consecutive rows of unsigned A127677, further modified by appending an initial rows of zeros, generates the modified A111125. Cf. A208513 and A034807.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 12, 20, and 21) and Damianou and Evripidou (p. 7).
See A111125 for a relation to the squares of the odd row polynomials here with the constant removed.
p(n,x)^2 = 2 + p(2*n,x). See also A127672. (End)
a(n,m) = -2*a(n-1,m) + a(n-1,m-1) - a(n-2,m) for n >= 2 with initial conditions a(0,0) = 2, a(1,0) = -2, a(1,1) = 1, a(0,m) = 0 for m != 0, a(1,m) = 0 for m != 0,1. - William P. Orrick, Jun 09 2020
p(n,x) = (x-2)*p(n-1,x) - p(n-2,x) for n >= 2. - William P. Orrick, Jun 09 2020

Extensions

Definition corrected by Eric W. Weisstein, Apr 06 2017

A319225 Number of acyclic spanning subgraphs of a cycle graph, where the sizes of the connected components are given by the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 4, 6, 5, 5, 1, 7, 5, 8, 5, 6, 6, 9, 5, 3, 7, 2, 6, 10, 12, 11, 1, 7, 8, 7, 9, 12, 9, 8, 6, 13, 14, 14, 7, 7, 10, 15, 6, 4, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 21, 18, 12, 8, 1, 9, 16, 19, 9, 11, 16, 20, 14, 21, 13, 8, 10, 9, 18
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2018

Keywords

Comments

a(1) = 1 by convention.
A prime index of n is a number m such that prime(m) divides n.

Examples

			Of the cycle ({1,2,3}, {(1,2),(2,3),(3,1)}) the spanning subgraphs where the sizes of connected components are (2,1) are: ({1,2,3}, {(1,2)}), ({1,2,3}, {(2,3)}), ({1,2,3}, {(3,1)}). Since the prime indices of 6 are (2,1), we conclude a(6) = 3.
		

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[With[{m=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Select[Subsets[Partition[Range[Total[m]],2,1,1],{Total[m]-PrimeOmega[n]}],Sort[Length/@csm[Union[#,List/@Range[Total[m]]]]]==m&]]],{n,30}]

Formula

a(n) = A056239(n) * (Omega(n) - 1)! / Product c_i! where c_i is the multiplicity of prime(i) in the prime factorization of n.

A263634 Irregular triangle read by rows: row n gives coefficients of n-th logarithmic polynomial L_n(x_1, x_2, ...) with monomials sorted into standard order.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -6, 12, -4, -3, 1, 24, -60, 20, 30, -5, -10, 1, -120, 360, -120, -270, 30, 120, 30, -6, -15, -10, 1, 720, -2520, 840, 2520, -210, -1260, -630, 42, 210, 140, 210, -7, -21, -35, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2015

Keywords

Comments

"Standard order" here means as produced by Maple's "sort" command.
From Petros Hadjicostas, May 27 2020: (Start)
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3. (End)
Row sums are 0 (for n > 1). Numbers of terms in rows are partition numbers A000041.
From Tom Copeland, Nov 06 2015: (Start)
With the formal Taylor series f(x) = 1 + x[1] x + x[2] x^2/2! + ... , the partition polynomials of this entry give d[log(f(x))]/dx = L_1(x[1]) + L_2(x[1], x[2]) x + L_3(...) x^2/2! + ..., and the coefficients of the reduced polynomials with x[n] = t are signed A028246.
The raising operator R = x + d[log(f(D)]/dD = x + L_1(x[1]) + L_2[x[1], x[2]) D + L_3(x[1], x[2], x[3]) D^2/2! + ... with D = d/dx generates an Appell sequence of polynomials, given umbrally by P_n(x[1], ..., x[n]; x) = (x[.] + x)^n = Sum_{k=0..n} binomial(n,k) x[k] * x^(n-k) = R^n 1 with the e.g.f. f(t)*e^(x*t) = exp[t P.(x[1], ..., x[.]; x)]. P_0 = x[0] = 1.
The umbral compositional inverse Appell sequence is generated by R = x - d[log(f(D))]/dD with e.g.f. e^(x*t)/f(t) = exp[t IP.(x[1], ..., x[.]; x)], so umbrally IP_n(x[1], ..., x[n]; P.(x[1], ..., x[n]; x)) = x^n = P_n(x[1], ..., x[n]; IP.(x[1], ..., x[n]; x)). An unsigned array for the reduced IP_n(x[1], ..., x[n]; x) polynomials with IP_0 = x[0] = 1 and x[n] = -1 for n > 0 is A154921, for which f(t) = 2 - e^t. (End)
From Tom Copeland, Sep 08 2016: (Start)
The Appell formalism allows a matrix representation in the power basis x^n of the raising operator R that incorporates this array's partition polynomials L_n(x[1], ..., x[n]):
VP_(n+1) = VP_n * R = VP_n * XPS^(-1) * MX * XPS, where XPS is the matrix formed from multiplying the n-th diagonal of the Pascal matrix PS of A007318 by the indeterminate x[n], with x[0] = 1 for the main diagonal of ones, i.e., XPS[n,k] = PS[n,k] * x[n-k]; the matrix MX is A129185; the matrix XPS^(-1) is the inverse of XPS, which can be formed by multiplying the diagonals of the Pascal matrix by the partition polynomials IPT(n, x[1], ..., x[n]) of A133314, i.e., XPS^(-1)[n,k] = PS[n,k] * IPT(n-k, x[1], ...); and VP_n is the row vector in the power basis representing the Appell polynomial P_n(x) formed from the basic sequence of moments 1, x[1], x[2], ..., i.e., umbrally P_n(x) = (x[.] + x)^n = Sum_{k=0..n} binomial(n,k) * x[k] * x^(n-k).
Then R = XPS^(-1) * MX * XPS is the Pascal matrix PS with an additional first superdiagonal of ones and the other lower diagonals multiplied by the partition polynomials of this array, i.e., R[n,k] = PS[n,k] * L_{n+1-k}(x[1], ..., x[n+1-k]) except for the first superdiagonal of ones.
Consistently, VP_n = (1, 0, 0, ...) * R^n = (1, 0, 0, ...) * XPS^(-1) * MX^n * XPS = (1, 0, 0, ...) * MX^n * XPS = the n-th row vector of XPS, which is the vector representation of P_n(x) = (x[.] + x)^n with x[0] = 1.
See the Copeland link for the umbral representation R = exp[g.*D] * x * exp[h.*D] that reflects the matrix representations.
The Stirling partition polynomials of the first kind St1_n(a[1], a[2], ..., a[n]) of A036039, the Stirling partition polynomials of the second kind St2_n(b[1], b[2], ..., b[n]) of A036040, and the refined Lah polynomials Lah_n[c[1], c[2], ..., c[n]) of A130561 are Appell sequences in the respective distinguished indeterminates a[1], b[1], and c[1]. Comparing the formulas for their raising operators with that in this entry, L_n(x[1], x[2], ..., x[n]) evaluates to
A) (n-1)! * a[n] for x[n] = St1_n(a[1], a[2], ..., a[n]);
B) b[n] for x[n] = St2_n(b[1], b[2], ..., b[n]);
C) n! * c[n] for x[n] = Lah_n(c[1], c[2], ..., c[n]).
Conversely, from the respective e.g.f.s (added Sep 12 2016)
D) x[n] = St1_n(L_1(x[1])/0!, ..., L_n(x[1], ..., x[n])/(n-1)!);
E) x[n] = St2_n(L_1(x[1]), ..., L_n(x[1], ..., x[n]));
F) x[n] = Lah_n(L_1(x[1])/1!, ..., L_n(x[1], ..., x[n])/n!).
Given only the Appell sequence with no closed form for the e.g.f., the raising operator can be generated using this formalism, as has been partially done for A134264. (End)
For the Appell sequences above, the raising operator is related to the recursion P_(n+1)(x) = x * P_n(x) + Sum_{k=0..n} binomial(n,k) * L_(n-k+1)(x[1], ..., x[n+k-1]) * P_k(x). For a derivation and connections to formal cumulants (c_n = L_n(x[1], ...)) and moments (m_n = x[n]), see the Copeland link on noncrossing partitions. With x = 0, the recursion reduces to x[n+1] = Sum_{k = 0..n} binomial(n,k) * L_(n-k+1)(x[1], ..., x[n+k-1]) * x[k] with x[0] = 1. This array is a differently ordered version of A127671. - Tom Copeland, Sep 13 2016
With x[n] = x^(n-1), a signed version of A130850 is obtained. - Tom Copeland, Nov 14 2016
See p. 2 of Getzler for a relation to stable graphs called necklaces used in computations for Deligne-Mumford-Knudsen moduli spaces of stable curves of genus 1. - Tom Copeland, Nov 15 2019
For a relation to a combinatorial Faa di Bruno Hopf algebra related to functional composition, as presented by Connes and Moscovici, see Figueroa et al. - Tom Copeland, Jan 17 2020
From Tom Copeland, May 17 2020: (Start)
The e.g.f. of an Appell sequence is f(t) e^(x*t) with f(0) = 1. Given the Laguerre-Polya class function f(t) = e^(-a*t^2 + b*t) Product_m (1 - t/z_m) e^(t/z_m) with a = 0 for simplicity (more generally a >= 0) and b real and where the product runs over all the zeros z_m of f(t) with all zeros real and Sum_m 1/(z_m)^2 convergent, the raising operator of the Appell polynomials is R = x + b - Sum_{k > 0} c_(k+1) D^k with c_k = Sum_m (1/(z_m)^k), i.e., traces of powers of the reciprocals of the zeros. From R in earlier comments, b = L_1(x_1) and otherwise c_k = -L_k(x_1, ..., x_k).
The Laguerre / Turan / de Gua inequalities (Csordas and Williamson and Skovgaard) imply that all the zeros of each Appell polynomial are real and simple and its extrema are local maxima above the x-axis and local minima below and are located above or below the zeros of the next lower degree Appell polynomial. (End)
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)
Ignoring signs, these polynomials appear in Schröder in the set of equations (II) on p. 343 and in Stewart's translation on p. 31. - Tom Copeland, Aug 25 2021

Examples

			The first few polynomials are:
(1) x[1].
(2) -x[1]^2 + x[2].
(3) 2*x[1]^3 - 3*x[1]*x[2] + x[3].
(4) -6*x[1]^4 + 12*x[1]^2*x[2] - 4*x[1]*x[3] - 3*x[2]^2 + x[4].
(5) 24*x[1]^5 - 60*x[1]^3*x[2] + 20*x[1]^2*x[3] + 30*x[1]*x[2]^2 - 5*x[1]*x[4] - 10*x[2]*x[3] + x[5].
(6) -120*x[1]^6 + 360*x[1]^4*x[2] - 120*x[1]^3*x[3] - 270*x[1]^2*x[2]^2 + 30*x[1]^2*x[4] + 120*x[1]*x[2]*x[3] + 30*x[2]^3 - 6*x[1]*x[5] - 15*x[2]*x[4] - 10*x[3]^2 + x[6].
...
[1]    1
[2]   -1,    1
[3]    2,   -3,     1
[4]   -6,   12,    -4,    -3,   1
[5]   24,  -60,    20,    30,  -5,  -10,   1
[6] -120,  360,  -120,  -270,  30,  120,  30, -6, -15, -10, 1
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 140, 156, 308.

Crossrefs

Programs

  • Maple
    triangle := proc(numrows) local E, s, Q;
    E := add(x[i]*t^i/i!, i=1..numrows);
    s := series(log(1 + E), t, numrows+1);
    Q := k -> sort(expand(k!*coeff(s, t, k)));
    seq(print(coeffs(Q(k))), k=1..numrows) end:
    triangle(6); # updated by Peter Luschny, May 27 2020

Formula

G.f.: Log(1 + Sum_{i >= 1} x_i*t^i/i!) = Sum_{n >= 1} L_n(x_1, x_2, ...)*t^n/n!. [Comtet, p. 140, Eq. [5a]. - corrected by Tom Copeland, Sep 08 2016]
Conjecture: row polynomials are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} binomial(n-2,j-1)*R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = x_k for k > 0. - Mikhail Kurkov, Mar 30 2025

A319226 Irregular triangle where T(n,k) is the number of acyclic spanning subgraphs of a cycle graph, where the sizes of the connected components are given by the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 3, 2, 6, 12, 9, 6, 6, 1, 7, 7, 7, 7, 14, 7, 7, 7, 7, 7, 21, 14, 7, 7, 1, 8, 8, 8, 4, 8, 8, 8, 16, 16, 8, 2, 24, 8, 24, 12, 16, 8, 32, 20, 8, 8, 1, 9, 9, 9, 9, 9, 9, 18, 9, 9, 9, 18, 18, 3, 27, 27
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2018

Keywords

Comments

A refinement of A135278, up the sign these are the coefficients appearing in the expansion of power-sum symmetric functions in terms of elementary or homogeneous symmetric functions.

Examples

			Triangle begins:
  1
  2  1
  3  3  1
  4  2  4  4  1
  5  5  5  5  5  5  1
  6  6  6  3  2  6 12  9  6  6  1
The fourth row corresponds to the symmetric function identities:
  p(4) = -4 e(4) + 2 e(22) + 4 e(31) - 4 e(211) + e(1111)
  p(4) =  4 h(4) - 2 h(22) - 4 h(31) + 4 h(211) - h(1111).
		

Crossrefs

Signed versions with different row-orderings are A115131, A210258, A263916.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Partition[Range[n],2,1,1],{n-PrimeOmega[m]}],Sort[Length/@csm[Union[#,List/@Range[n]]]]==primeMS[m]&]],{n,6},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]

A180874 Lassalle's sequence connected with Catalan numbers and Narayana polynomials.

Original entry on oeis.org

1, 1, 5, 56, 1092, 32670, 1387815, 79389310, 5882844968, 548129834616, 62720089624920, 8646340208462880, 1413380381699497200, 270316008395632253340, 59800308109377016336155, 15151722444639718679892150, 4359147487054262623576455600
Offset: 1

Views

Author

Jonathan Vos Post, Sep 22 2010

Keywords

Comments

Defined by the recurrence formula in Theorem 1, page 2 of Lasalle.
From Tom Copeland, Jan 26 2016: (Start)
Let G(t) = Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp(c.t) be the e.g.f. of the aerated Catalan numbers c_n of A126120.
R = x + H(D) = x + d/dD log[G(D)] = x + D - D^3/3! + 5 D^5/5! - 56 D^7/7! + ... = x + e^(r. D) generates a signed, aerated version of this entry's sequence a(n), (r.)^(2n+1) = r(2n+1) = (-1)^n a(n+1) for n>=0 and r(0) = a(0) = 0, and is, with D = d/dx, the raising operator for the Appell polynomials P(n,x) of A097610, where P(n,x) = (c. + x)^n = Sum{k=0 to n} binomial(n,k) c_k x^(n-k) with c_k = A126120(k), i.e., R P(n,x) = P(n+1,x).
d/dt log[G(t)] = e^(r.t) = e^(q.t) / e^(c.t) = Ev[c. e^(c.t)] / Ev[e^(c.t)] = e^(q.t) e^(d.t) = [Sum_{n>=0} 2n t^(2n-1)/(n!(n+1)!)] / [Sum_{n>=0} t^(2n)/(n!(n+1)!)] with Ev[..] denoting umbral evaluation, so q(n) = c(n+1) = A126120(n+1) and d(2n) = (-1)^n A238390(n) and vanishes otherwise. Then (r. + c.)^n = q(n) = Sum_{k=0..n} binomial(n,k) r(k) c(n-k) and (q. + d.)^n = r(n), relating A180874, A126120 (A000108), and A238390 through binomial convolutions.
The sequence can also be represented in terms of the Faber polynomials of A263916 as a(n) = |(2n-1)! F(2n,0,b(2),0,b(4),0,..)| = |h(2n)| where b(2n) = 1/(n!(n + 1)!) = A126120(2n)/(2n)! = A000108(n)/(2n)!, giving h(0) = 1, h(1) = 0, h(2) = 1, h(3) = 0, h(4) = -1, h(5) = 0, h(6) = 5, h(7) = 0, h(8) = -56, ..., implying, among other relations, that A000108(n/2)= A126120(n) = Bell(n,0,h(2),0,h(4),...), the Bell polynomials of A036040 which reduce to A257490 in this case.
(End)
From Colin Defant, Sep 06 2018: (Start)
a(n) is the number of pairs (rho,r), where rho is a matching on [2n] and r is an acyclic orientation of the crossing graph of rho in which the block containing 1 is the only source (see the Josuat-Verges paper or the Defant-Engen-Miller paper for definitions).
a(n) is the number of permutations of [2n-1] that have exactly 1 preimage under West's stack-sorting map.
a(n) is the number of valid hook configurations of permutations of [2n-1] that have n-1 hooks (see the paper by Defant, Engen, and Miller for definitions).
Say a binary tree is full if every vertex has either 0 or 2 children. If u is a left child in such a tree, then we can start at the sibling of u and travel down left edges until reaching a leaf v. Call v the leftmost nephew of u. A decreasing binary plane tree on [m] is a binary plane tree labeled with the elements of [m] in which every nonroot vertex has a label that is smaller than the label of its parent. a(n) is the number of full decreasing binary plane trees on [2n-1] in which every left child has a label that is larger than the label of its leftmost nephew.
(End)

Crossrefs

Programs

  • Maple
    A000108 := proc(n) binomial(2*n,n)/(1+n) ; end proc:
    A180874 := proc(n) option remember; if n = 1 then 1; else A000108(n)+add((-1)^j*binomial(2*n-1,2*j-1)*procname(j)*A000108(n-j),j=1..n-1) ;   %*(-1)^(n-1) ; end if; end proc: # R. J. Mathar, Apr 16 2011
  • Mathematica
    nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (-1)^(n-1)*(Binomial[2*n,n]/(n+1) + Sum[(-1)^j*Binomial[2n-1,2j-1]*a[[j]]* Binomial[2*(n-j),n-j]/(n-j+1),{j,1,n-1}]),{n,2,nmax}]; a (* Vaclav Kotesovec, Feb 28 2014 *)

Formula

a(n) = (-1)^(n-1) * (C(n)+Sum_{j=1..n-1} (-1)^j *binomial(2n-1,2j-1) * a(j) *C(n-j)), where C() = A000108(). - R. J. Mathar, Apr 17 2011, corrected by Vaclav Kotesovec, Feb 28 2014
E.g.f.: Sum_{k>=0} a(k)*x^(2*k+2)/(2*k+2)! = log(x/BesselJ(1,2*x)). - Sergei N. Gladkovskii, Dec 28 2011
a(n) ~ (n!)^2 / (sqrt(Pi) * n^(3/2) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.917623165132743328576236110539381686855099186384686... - Vaclav Kotesovec, added Feb 28 2014, updated Mar 01 2014
Define E(m,n) by E(1,1) = 1, E(n,n) = 0 for n > 1, and E(m,n) = Sum_{j=1..m} Sum_{i=1..n-m-1} binomial(n-m-1,i-1) * F_j(i+j-1) * F_{m-j}(n-j-i) for 0 <= m < n, where F_m(n) = Sum_{j=m..n} E_j(n). Then a(n) = F_0(2n-1). - Colin Defant, Sep 06 2018

A132460 Irregular triangle read by rows of the initial floor(n/2) + 1 coefficients of 1/C(x)^n, where C(x) is the g.f. of the Catalan sequence (A000108).

Original entry on oeis.org

1, 1, 1, -2, 1, -3, 1, -4, 2, 1, -5, 5, 1, -6, 9, -2, 1, -7, 14, -7, 1, -8, 20, -16, 2, 1, -9, 27, -30, 9, 1, -10, 35, -50, 25, -2, 1, -11, 44, -77, 55, -11, 1, -12, 54, -112, 105, -36, 2, 1, -13, 65, -156, 182, -91, 13, 1, -14, 77, -210, 294, -196, 49, -2
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Comments

The length of row n is A008619(n).
Essentially equals a signed version of A034807, the triangle of Lucas polynomials. The initial n coefficients of 1/C(x)^n consist of row n followed by floor((n-1)/2) zeros for n > 0.
For the following formula for 1/C(x)^n see the W. Lang reference, proposition 1 on p. 411:
1/C(x)^n = (sqrt(x))^n*(S(n,1/sqrt(x)) - sqrt(x)*S(n-1,1/sqrt(x))*C(x)), n >= 0, with the Chebyshev polynomials S(n,x) with coefficients given in A049310. See also the coefficient array A115139 for P(n,x) = (sqrt(x)^(n-1))*S(n-1, 1/sqrt(x)). - Wolfdieter Lang, Sep 14 2013
This triangular array is composed of interleaved rows of reversed, A127677 (cf. A156308, A217476, A263916) and reversed, signed A111125. - Tom Copeland, Nov 07 2015
It seems that the n-th row lists the coefficients of the HOMFLYPT (HOMFLY) polynomial reduced to one variable for link family n, see Jablan's slide 38. - Andrey Zabolotskiy, Jan 16 2018
For n >= 1 row n gives the coefficients of the Girard-Waring formula for the sum of x1^n + x2^n in terms of the elementary symmetric functions e_1(x1,x2) = x1 + x2 and e_2(x1,x2) = x1*x2. This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions with parts larger than 2 eliminated. E.g., n = 4: x1^4 + x2^4 = 1*e1^4 - 4*e1^3*e2 + 2*e1*e2^2. See also A115131, row n = 4, with the mentioned partitions omitted. - Wolfdieter Lang, May 03 2019
Row n lists the coefficients of the n-th Faber polynomial for the replicable function given in A154272 with offset -1. - Ben Toomey, May 12 2020

Examples

			The irregular triangle T(n,k) begins:
n\k 0    1    2    3    4    5    6   7 ...
-------------------------------------------------
0:  1
1:  1
2:  1   -2
3:  1   -3
4:  1   -4    2
5:  1   -5    5
6:  1   -6    9   -2
7:  1   -7   14   -7
8:  1   -8   20  -16    2
9:  1   -9   27  -30    9
10: 1  -10   35  -50   25   -2
11: 1  -11   44  -77   55  -11
12: 1  -12   54 -112  105  -36    2
13: 1  -13   65 -156  182  -91   13
14: 1  -14   77 -210  294 -196   49  -2
... (reformatted - _Wolfdieter Lang_, May 03 2019)
		

Crossrefs

Cf. A000108, A008619, A034807 (Lucas polynomials), A111125, A115131 (Waring numbers), A127677, A132461 (row squared sums), A156308, A217476, A263916.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, k_] := (-1)^k (Binomial[n-k, k] + Binomial[n-k-1, k-1]);
    Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jun 04 2018 *)
  • PARI
    {T(n,k)=if(k>n\2,0,(-1)^k*(binomial(n-k, k)+binomial(n-k-1, k-1)))}

Formula

T(n,k) = (-1)^k*( C(n-k,k) + C(n-k-1,k-1) ) for n >= 0, 0 <= k <= floor(n/2).
T(0,0) = 1; T(n,k) = (-1)^k*n*binomial(n-k,k)/(n-k), k = 0..floor(n/2). - Wolfdieter Lang, May 03 2019

A156308 Inverse of triangle S(n,m) defined by sequence A156290, n >= 1, 1 <= m <= n.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 20, 8, 1, 25, 50, 35, 10, 1, 36, 105, 112, 54, 12, 1, 49, 196, 294, 210, 77, 14, 1, 64, 336, 672, 660, 352, 104, 16, 1, 81, 540, 1386, 1782, 1287, 546, 135, 18, 1, 100, 825, 2640, 4290, 4004, 2275, 800, 170, 20, 1
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

From Wolfdieter Lang, Jun 26 2011: (Start)
This triangle S(n,m) appears as U_m(n) in the Knuth reference on p. 285. It is related to the Riordan triangle T_m(n) = A111125(n,m) by S(n,m) = A111125(n,m) - A111125(n-1,m), n >= m >= 1 (identity on p. 286).
Also, S(n,m)-S(n-1,m) = A111125(n-1,m-1), n >= 2, m >= 1 (identity on p. 286). (End)
These polynomials may be expressed in terms of the Faber polynomials of A263916 and are embedded in A127677 and A208513. - Tom Copeland, Nov 06 2015

Examples

			Triangle starts:
  n=1:  1;
  n=2:  4,  1;
  n=3:  9,  6,  1;
  n=4: 16, 20,  8,  1;
  ...
		

Crossrefs

Same as triangle A208513 with the first column truncated.
Columns: A000290 (m=1), A002415 (m=2), A040977 (m=3), A053347 (m=4), A054334 (m=5).

Programs

  • Magma
    [(n/k)*Binomial(n+k-1, 2*k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 01 2022
  • Mathematica
    S[m_] := Flatten[Table[k/j Binomial[k + j - 1, 2 j - 1], {k, 1, m}, {j, 1, k}]]
  • Sage
    flatten([[(n/k)*binomial(n+k-1, 2*k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 01 2022
    

Formula

S(n, m) = (n/m) * binomial(n + m - 1, 2*m - 1).
From Peter Bala, May 01 2014: (Start)
The n-th row o.g.f. is polynomial R(n,x) = 2/x*( T(n,(x + 2)/2) - 1 ), where T(n,x) is Chebyshev polynomial of the first kind. They form a divisibility sequence: if n divides m then R(n,x) divides R(m,x) in the ring Z[x].
R(2*n,x) = (x + 4)*U(n-1,(x + 2)/2)^2;
R(2*n + 1,x) = ( U(n,(x + 2)/2) + U(n-1,(x + 2)/2) )^2.
O.g.f.: Sum_{n >= 0} R(n,x)*z^n = z*(1 + z)/( (1 - z)*(1 - (x + 2)*z + z^2) ). (End)
The polynomial R(n,x) defined above satisfies (x + 1/x - 2) * R(n, x + 1/x - 2) = x^n + 1/x^n - 2. - Alexander Burstein, May 23 2021

Extensions

Edited by Max Alekseyev, Mar 05 2018

A208513 Triangle of coefficients of polynomials u(n,x) jointly generated with A111125; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 6, 1, 1, 16, 20, 8, 1, 1, 25, 50, 35, 10, 1, 1, 36, 105, 112, 54, 12, 1, 1, 49, 196, 294, 210, 77, 14, 1, 1, 64, 336, 672, 660, 352, 104, 16, 1, 1, 81, 540, 1386, 1782, 1287, 546, 135, 18, 1, 1, 100, 825, 2640, 4290, 4004, 2275, 800, 170, 20, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

The columns of A208513 are identical to those of A208509. Here, however, the alternating row sums are periodic (with period 1,0,-2,-3,-2,0).
From Tom Copeland, Nov 07 2015: (Start)
These polynomials may be expressed in terms of the Faber polynomials of A263916, similar to A127677.
Rephrasing notes in A111125: Append an initial column of zeros except for a 1 at the top to A111125. Then the rows of this entry contain the partial sums of the column sequences of modified A111125; therefore, the difference of consecutive pairs of rows of this entry, modified by appending an initial row of zeros to it, generates the modified A111125. (End)

Examples

			First five rows:
  1;
  1,  1;
  1,  4,  1;
  1,  9,  6, 1;
  1, 16, 20, 8, 1;
First five polynomials u(n,x):
  u(1,x) = 1;
  u(2,x) = 1 +    x;
  u(3,x) = 1 +  4*x +    x^2;
  u(4,x) = 1 +  9*x +  6*x^2 +   x^3;
  u(5,x) = 1 + 16*x + 20*x^2 + 8*x^3 + x^4;
		

Crossrefs

Programs

  • Magma
    A208513:= func< n,k | k eq 1 select 1 else (2*(n-1)/(n+k-2))*Binomial(n+k-2, 2*k-2) >;
    [A208513(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 02 2022
    
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n,z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n,z}]
    cv = Table[CoefficientList[v[n, x], x], {n,z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *)
    (* Second program *)
    T[n_, k_]:= If[k==1, 1, ((n-1)/(k-1))*Binomial[n+k-3, 2*k-3]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 02 2022 *)
  • Sage
    def A208513(n,k): return 1 if (k==1) else ((n-1)/(k-1))*binomial(n+k-3, 2*k-3)
    flatten([[A208513(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 02 2022

Formula

Coefficients of u(n, x) from the mixed recurrence relations:
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x) = 1, u(2,x) = 1+x, v(1,x) = 1, v(2,x) = 3+x.
From Peter Bala, May 01 2012: (Start)
Working with an offset of 0: T(n,0) = 1; T(n,k) = (n/k)*binomial(n+k-1,2*k-1) = (n/k)*A078812(n,k) for k > 0. Cf. A156308.
O.g.f.: ((1-t)^2 + t^2*x)/((1-t)*((1-t)^2-t*x)) = 1 + (1+x)*t + (1+4*x+x^2)*t^2 + ....
u(n+1,x) = -1 + (b(2*n,x) + 1)/b(n,x), where b(n,x) = Sum_{k = 0..n} binomial(n+k, 2*k)*x^k are the Morgan-Voyce polynomials of A085478.
This triangle is formed from the even numbered rows of A211956 with a factor of 2^(k-1) removed from the k-th column entries.
(End)
T(n, k) = (2*(n-1)/(n+k-2))*binomial(n+k-2, 2*k-2). - G. C. Greubel, Feb 02 2022

A084534 Triangle read by rows: row #n has n+1 terms. T(n,0)=1, T(n,n)=2, T(n,m) = T(n-1,m-1) + Sum_{k=0..m} T(n-1-k,m-k).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 9, 2, 1, 8, 20, 16, 2, 1, 10, 35, 50, 25, 2, 1, 12, 54, 112, 105, 36, 2, 1, 14, 77, 210, 294, 196, 49, 2, 1, 16, 104, 352, 660, 672, 336, 64, 2, 1, 18, 135, 546, 1287, 1782, 1386, 540, 81, 2, 1, 20, 170, 800, 2275, 4004, 4290, 2640, 825, 100, 2
Offset: 0

Views

Author

Gary W. Adamson, May 29 2003

Keywords

Comments

Sum of row #n = A000204(2n). (But sum of row #0 = 1.)
Row #n has the unsigned coefficients of the monic polynomial whose roots are 2 cos(Pi*(2k-1)/(4n)) for k=1..2n. [Comment corrected by Barry Brent, Jan 03 2006]
The positive roots are some diagonal lengths of a regular (4n)-gon, inscribed in the unit circle.
Polynomial of row #n = Sum_{m=0..n} (-1)^m * T(n,m) x^(2*n-2*m).
This is the unsigned version of the coefficient table for scaled Chebyshev T(2*n,x) polynomials. - Wolfdieter Lang, Mar 07 2007
Reversed A127677 (cf. A156308, A217476, A263916). - Tom Copeland, Nov 07 2015

Examples

			First few Chebyshev T(2*n,x) polynomials:
  T(2*0,x) = 1;
  T(2*1,x) = x^2 -   2;
  T(2*2,x) = x^4 -   4*x^2 +  2;
  T(2*3,x) = x^6 -   6*x^4 +  9*x^2 -  2;
  T(2*4,x) = x^8 -   8*x^6 + 20*x^4 - 16*x^2 +  2;
  T(2*5,x) = x^10 - 10*x^8 + 35*x^6 - 50*x^4 + 25*x^2 - 2;
Triangle begins as:
  1;
  1,  2;
  1,  4,  2;
  1,  6,  9,   2;
  1,  8, 20,  16,   2;
  1, 10, 35,  50,  25,  2;
  1, 12, 54, 112, 105, 36, 2;
		

References

  • I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 118.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. p. 37, eq.(1.96) and p. 4. eq.(1.10).

Crossrefs

Row sums are A005248 for n > 0.
Companion triangle A082985.
Cf. A082985 (unsigned scaled coefficient table for Chebyshev's T(2*n+1, x) polynomials).

Programs

  • Magma
    A084534:= func< n,k | k eq 0 select 1 else 2*(n/k)*Binomial(2*n-k-1, k-1) >;
    [A084534(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 02 2022
    
  • Maple
    T := proc(n, m): if n=0 then 1 else binomial(2*n-m, m)*2*n/(2*n-m) fi: end: seq(seq(T(n,m),m=0..n),n=0..10); # Johannes W. Meijer, May 31 2018
  • Mathematica
    a[n_, m_] := Binomial[2n-m, m]*2n/(2n-m); a[0, 0] = 1; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 12 2016, after Wolfdieter Lang *)
  • PARI
    T(n,m) = if(n==0, m==0, binomial(2*n-m, m)*2*n/(2*n-m)) \\ Andrew Howroyd, Dec 18 2017
    
  • Sage
    def A084534(n,k): return 1 if (k==0) else 2*(n/k)*binomial(2*n-k-1, k-1)
    flatten([[A084534(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 02 2022

Formula

T(n,m) = binomial(2*n-m, m)*2*n/(2*n-m) for n > 0. - Andrew Howroyd, Dec 18 2017
Signed version from Wolfdieter Lang, Mar 07 2007: (Start)
a(n,m)=0 if n
a(n,m)=0 if n
a(n,m)=0 if nA127674(n,n-m)/2^(2*(n-m)-1) (scaled coefficients of Chebyshev's T(2*n,x), decreasing even powers). [corrected by Johannes W. Meijer, May 31 2018] (End)

Extensions

Edited by Don Reble, Nov 12 2005

A265185 Non-vanishing traces of the powers of the adjacency matrix for the simple Lie algebra B_4: 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n).

Original entry on oeis.org

4, 8, 24, 80, 272, 928, 3168, 10816, 36928, 126080, 430464, 1469696, 5017856, 17132032, 58492416, 199705600, 681837568, 2327939072, 7948081152, 27136446464, 92649623552, 316325601280, 1080003158016, 3687361429504, 12589439401984, 42983034748928
Offset: 0

Author

Tom Copeland, Dec 04 2015

Keywords

Comments

a(n) is the trace of the 2*n-th power of the adjacency matrix M for the simple Lie algebra B_4, given in the Damianou link. M = Matrix[row 1; row 2; row 3; row 4] = Matrix[0,1,0,0; 1,0,1,0; 0,1,0,2; 0,0,1,0]. Equivalently, the trace tr(M^(2*k)) is the sum of the 2*n-th powers of the eigenvalues of M. The eigenvalues are the zeros of the characteristic polynomial of M, which is det(x*I - M) = x^4 - 4*x^2 + 2 = A127672(4,x), and are (+-) sqrt(2 + sqrt(2)) and (+-) sqrt(2 - sqrt(2)), or the four unique values generated by 2*cos((2*n+1)*Pi/8). Compare with A025192 for B_3. The odd power traces vanish.
-log(1 - 4*x^2 + 2*x^4) = 8*x^2/2 + 24*x^4/4 + 80*x^6/6 + ... = Sum_{n>0} tr(M^k) x^k / k = Sum_{n>0} a(n) x^(2k) / 2k gives an aerated version of the sequence a(n), excluding a(0), and exp(-log(1 - 4*x + 2*x^2)) = 1 / (1 - 4*x + 2*x^2) is the e.g.f. for A007070.
As in A025192, the cycle index partition polynomials P_k(x[1],...,x[k]) of A036039 evaluated with the negated power sums, the aerated a(n), are P_2(0,-a(1)) = P_2(0,-8) = -8, P_4(0,-a(1),0,-a(2)) = P_4(0,-8,0,-24) = 48, and all other P_k(0,-a(1),0,-a(2),0,...) = 0 since 1 - 4*x^2 + 2*x^4 = 1 - 8*x^2/2! + 48*x^4/4! = det(I - x M) = exp(-Sum_{k>0} tr(M^k) x^k / k) = exp[P.(-tr(M),-tr(M^2),...)x] = exp[P.(0,-a(1),0,-a(2),...)x].
Because of the inverse relation between the Faber polynomials F_n(b1,b2,...,bn) of A263916 and the cycle index polynomials, F_n(0,-4,0,2,0,0,0,...) = tr(M^n) gives aerated a(n), excluding a(0). E.g., F_2(0,-4) = -2 * -4 = 8, F_4(0,-4,0,2) = -4 * 2 + 2 * (-4)^2 = 24, and F_6(0,-4,0,2,0,0) = -2*(-4)^3 + 6*(-4)*2 = 80.

Programs

  • Magma
    [Floor(2 * ((2 + Sqrt(2))^n + (2 - Sqrt(2))^n)): n in [0..30]]; // Vincenzo Librandi, Dec 06 2015
    
  • Mathematica
    4 LinearRecurrence[{4, -2}, {1, 2}, 30] (* Vincenzo Librandi, Dec 06 2015 and slightly modified by Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-8*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Feb 12 2018

Formula

a(n) = 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n) = Sum_{k=0..3} 2^(2n) (cos((2k+1)*Pi/8))^(2n) = 2*2^(2n) (cos(Pi/8)^(2n) + cos(3*Pi/8)^(2n)) = 2 Sum_{k=0..1} (exp(i(2k+1)*Pi/8) + exp(-i*(2k+1)*Pi/8))^(2n).
E.g.f.: 2 * e^(2*x) * (e^(sqrt(2)*x) + e^(-sqrt(2)*x)) = 4*e^(2*x)*cosh(sqrt(2)*x) = 2*(exp(4*x*cos(Pi/8)^2) + exp(4*x cos(3*Pi/8)^2) ).
a(n) = 4*A006012(n) = 8*A007052(n-1) = 2*A056236(n).
G.f.: (4-8*x)/(1-4*x+2*x^2). - Robert Israel, Dec 07 2015
Note the preceding o.g.f. is four times that of A006012 and the denominator is y^4 * A127672(4,1/y) with y = sqrt(x). Compare this with those of A025192 and A189315. - Tom Copeland, Dec 08 2015

Extensions

More terms from Vincenzo Librandi, Dec 06 2015
Previous Showing 11-20 of 27 results. Next