cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 186 results. Next

A039814 Matrix square of Stirling-1 triangle A008275.

Original entry on oeis.org

1, -2, 1, 7, -6, 1, -35, 40, -12, 1, 228, -315, 130, -20, 1, -1834, 2908, -1485, 320, -30, 1, 17582, -30989, 18508, -5005, 665, -42, 1, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

Exponential Riordan array [1/((1 + x)*(1 + log(1 + x))), log(1 + log(1 + x))]. The row sums of the unsigned array give A007840 (apart from the initial term). - Peter Bala, Jul 22 2014
Also the Bell transform of (-1)^n*A003713(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
      1;
     -2,    1;
      7,   -6,     1;
    -35,   40,   -12,   1;
    228, -315,   130, -20,   1;
  -1834, 2908, -1485, 320, -30, 1;
...
		

Crossrefs

Column k=1..3 give (-1)^(n-1) * A003713(n), (-1)^n * A341587(n), (-1)^(n-1) * A341588(n).
Cf. A007840.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (-1)^n*add(k!*abs(Stirling1(n+1,k+1)), k=0..n), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    max = 9; t = Table[StirlingS1[n, k], {n, 1, max}, {k, 1, max}]; t2 = t.t; Table[t2[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
    rows = 9;
    t = Table[(-1)^n*Sum[k!*Abs[StirlingS1[n+1, k+1]], {k,0,n}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n, k) = sum(j=0, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Feb 13 2022

Formula

E.g.f. of k-th column: ((log(1+log(1+x)))^k)/k!.
E.g.f.: 1/(1 + t)*( 1 + log(1 + t) )^(x-1) = 1 + (-2 + x)*t + (7 - 6*x + x^2)*t^2/2! + .... - Peter Bala, Jul 22 2014
T(n,k) = Sum_{j=0..n} Stirling1(n,j) * Stirling1(j,k). - Seiichi Manyama, Feb 13 2022

A215861 Number T(n,k) of simple labeled graphs on n nodes with exactly k connected components that are trees or cycles; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 19, 19, 6, 1, 0, 137, 135, 55, 10, 1, 0, 1356, 1267, 540, 125, 15, 1, 0, 17167, 15029, 6412, 1610, 245, 21, 1, 0, 264664, 218627, 90734, 23597, 3990, 434, 28, 1, 0, 4803129, 3783582, 1515097, 394506, 70707, 8694, 714, 36, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2012

Keywords

Comments

Also the Bell transform of A215851(n+1). For the definition of the Bell transform see A264428 and the links given there. - Peter Luschny, Jan 21 2016

Examples

			T(4,2) = 19:
  .1 2.  .1 2.  .1-2.  .1-2.  .1 2.  .1 2.  .1 2.  .1 2.  .1 2.  .1 2.
  . /|.  .|\ .  .|/ .  . \|.  . /|.  .  |.  . / .  .|\ .  . \ .  .|  .
  .4-3.  .4-3.  .4 3.  .4 3.  .4 3.  .4-3.  .4-3.  .4 3.  .4-3.  .4-3.
  .
  .1-2.  .1-2.  .1 2.  .1-2.  .1-2.  .1 2.  .1-2.  .1 2.  .1 2.
  .|  .  . / .  .|/ .  . \ .  .  |.  . \|.  .   .  .| |.  . X .
  .4 3.  .4 3.  .4 3.  .4 3.  .4 3.  .4 3.  .4-3.  .4 3.  .4 3.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,     1;
  0,     4,     3,    1;
  0,    19,    19,    6,    1;
  0,   137,   135,   55,   10,   1;
  0,  1356,  1267,  540,  125,  15,   1;
  0, 17167, 15029, 6412, 1610, 245,  21,  1;
  ...
		

Crossrefs

Diagonal and lower diagonals give: A000012, A000217, A215862, A215863, A215864, A215865.
Row sums give: A144164.
T(2n,n) gives A309313.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
          `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
    # Alternatively, with the function BellMatrix defined in A264428:
    BellMatrix(n -> `if`(n<2, 1, n!/2+(n+1)^(n-1)), 8); # Peter Luschny, Jan 21 2016
  • Mathematica
    t[0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, k_] := t[n, k] =Sum[ Binomial[n-1, i]*t[n-1-i, k-1]* If[i < 2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 07 2013 *)
    (* Alternatively, with the function BellMatrix defined in A264428: *)
    g[n_] =  If[n < 2, 1, n!/2 + (n+1)^(n-1)]; BellMatrix[g, 8] (* Peter Luschny, Jan 21 2016 *)
    rows = 11;
    t = Table[If[n<2, 1, n!/2 + (n+1)^(n-1)], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: factorial(n)//2 + (n+1)^(n-1) if n>=2 else 1, 8) # Peter Luschny, Jan 21 2016

Formula

T(0,0) = 1, T(n,k) = 0 for k<0 or k>n, and otherwise T(n,k) = Sum_{i=0..n-k} C(n-1,i)*T(n-1-i,k-1)*h(i) with h(i) = 1 for i<2 and h(i) = i!/2 + (i+1)^(i-1) else.

A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.

Original entry on oeis.org

1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A048966; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n,m) = S2p(-2; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n, m) (Stirling 2nd kind). T(n,1)= A008544(n-1).
T(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m plane (aka ordered) increasing (rooted) trees where vertices of out-degree r>=0 come in r+1 different types (like an (r+1)-ary vertex). Proof from the e.g.f. of the first column Y(z) = 1 - (1-3*x)^(1/3) and the F. Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0) = 0, with out-degree o.g.f. phi(w)=1/(1-w)^2. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the triple factorial numbers A008544 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle begins:
       1;
       2,      1;
      10,      6,     1;
      80,     52,    12,    1;
     880,    600,   160,   20,   1;
   12320,   8680,  2520,  380,  30,  1;
  209440, 151200, 46480, 7840, 770, 42, 1;
Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
		

Crossrefs

Cf. A015735 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), this sequence (m=3), A000369 (m=4), A011801 (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A004747
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Maple
    T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)):
    for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od;
    # Karol A. Penson, Feb 06 2004
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    (* First program *)
    T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1];
    Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *)
    (* Second program *)
    f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *)
    (* Third program *)
    rows = 12;
    T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]];
    Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses [bell_transform from A264428]
    triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1))
    def A004747_row(n):
        trifact = [triplefactorial(k) for k in (0..n)]
        return bell_transform(n, trifact)
    [A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
    

Formula

T(n, m) = n!*A048966(n, m)/(m!*3^(n-m));
T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n
E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!.
Sum_{k=1..n} T(n, k) = A015735(n).
For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - Karol A. Penson, Feb 06 2004
T(n,1) = A008544(n-1). - Peter Luschny, Dec 23 2015

Extensions

New name from Peter Luschny, Dec 21 2015

A059419 Triangle T(n,k) (1 <= k <= n) of tangent numbers, read by rows: T(n,k) = coefficient of x^n/n! in expansion of (tan x)^k/k!.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 16, 0, 20, 0, 1, 0, 136, 0, 40, 0, 1, 272, 0, 616, 0, 70, 0, 1, 0, 3968, 0, 2016, 0, 112, 0, 1, 7936, 0, 28160, 0, 5376, 0, 168, 0, 1, 0, 176896, 0, 135680, 0, 12432, 0, 240, 0, 1, 353792, 0, 1805056, 0, 508640, 0, 25872, 0, 330, 0, 1, 0
Offset: 1

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Comments

(tan(x))^k = sum{n>0, If n+k is odd, T(n,k) = 0 = n!/k!*(-1)^((n+k)/2)*sum{j=k..n} (j!/n!) * Stirling2(n,j) * 2^(n-j) * (-1)^(n+j-k) * binomial(j-1,k-1)*x^n}. - Vladimir Kruchinin, Aug 13 2012
Also the Bell transform of A009006(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			     1;
     0,     1;
     2,     0,     1;
     0,     8,     0,    1;
    16,     0,    20,    0,    1;
     0,   136,     0,   40,    0,   1;
   272,     0,   616,    0,   70,   0,   1;
     0,  3968,     0, 2016,    0, 112,   0,  1;
  7936,     0, 28160,    0, 5376,   0, 168,  0,  1;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.

Crossrefs

Diagonals give A000182, A024283, A059420 (interspersed with 0's), also A007290, A059421. Row sums give A006229. Essentially the same triangle as A008308.
A111593 (signed triangle with extra column k=0 and row n=0).

Programs

  • Maple
    A059419 := proc(n,k) option remember; if n = k then 1; elif k <0 or k > n then 0; else  procname(n-1,k-1)+k*(k+1)*procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
  • Mathematica
    d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
    rows = 12;
    t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,n!*polcoeff(tan(x+x*O(x^n))^k/k!,n))
    
  • Sage
    def A059419_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*(k+2)*M[n-1,k+1]
        return M
    A059419_triangle(9) # Peter Luschny, Sep 19 2012

Formula

T(n+1, k) = T(n, k-1) + k*(k+1)*T(n, k+1), T(n, n) = 1.
If n+k is odd, T(n,k) = 0 = 1/k!*(-1)^((n+k)/2)*Sum_{j=k..n} j!* Stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1). - Vladimir Kruchinin, Feb 10 2011
E.g.f.: exp(t*tan(x))-1 = t*x + t^2*x^2/2! + (2*t + t^3)*x^3/3! + ....
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x^2)*d/dx. - Peter Bala, Nov 25 2011
The o.g.f.s of the diagonals of this triangle are rational functions obtained from the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + .... For example, the fourth subdiagonal has o.g.f. 8*t*(2+3*t)/(1-t)^7 = 16*t + 136*t^2 + 616*t^3 + .... - Peter Bala, Apr 23 2012
With offset 0 and initial column of zeros, except for T(0,0) = 1, e.g.f.(t,x) = e^(x*tan(t)) = e^(P(.,x)t) ; the lowering operator, L = atan(d/dx) ; and the raising operator, R = x [1 +(d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x). The sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001

A075497 Stirling2 triangle with scaled diagonals (powers of 2).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(2*z) - 1)*x/2) - 1.
Subtriangle of (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 13 2013
Also the inverse Bell transform of the double factorial of even numbers Product_ {k=0..n-1} (2*k+2) (A000165). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
This is the exponential Riordan array [exp(2*x), (exp(2*x) - 1)/2] belonging to the derivative subgroup of the exponential Riordan group. In the notation of Corcino, this is the triangle of (2, 2)-Stirling numbers of the second kind. A factorization of the array as an infinite product is given in the example section. - Peter Bala, Feb 20 2025

Examples

			Triangle begins:
  [1];
  [2,1];
  [4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
  ...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
  1
  0,  1
  0,  2,   1
  0,  4,   6,   1
  0,  8,  28,  12,  1
  0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1               \       /1             \ /1             \ /1            \
| 2    1           |     | 2   1          ||0  1           ||0  1          |
| 4    6   1       |  =  | 4   4   1      ||0  2   1       ||0  0  1       | ...
| 8   28  12   1   |     | 8  12   6  1   ||0  4   4  1    ||0  0  2  1    |
|16  120 100  20  1|     |16  32  24  8  1||0  8  12  6  1 ||0  0  4  4  1 |
|...               |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
		

Crossrefs

Row sums are A004211.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
           `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
            binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 13 2015
    # Alternatively, giving the triangle in the form displayed in the Example section:
    gf := exp(x*exp(z)*sinh(z)):
    X := n -> series(gf, z, n+2):
    Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
    A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
    seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
  • Mathematica
    Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
    

Formula

a(n, m) = (2^(n-m)) * Stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*2)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 2*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-2*k*x), m >= 1.
E.g.f. for m-th column: (((exp(2*x)-1)/2)^m)/m!, m >= 1.
The row polynomials in t are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+2*x)*d/dx. Cf. A008277. - Peter Bala, Nov 25 2011
From Peter Bala, Jan 13 2018: (Start)
n-th row polynomial R(n,x)= x o x o ... o x (n factors), where o is the deformed Hadamard product of power series defined in Bala, section 3.1.
R(n+1,x)/x = (x + 2) o (x + 2) o...o (x + 2) (n factors).
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(n-k)*R(k,x).
Dobinski-type formulas: R(n,x) = exp(-x/2)*Sum_{i >= 0} (2*i)^n* (x/2)^i/i!; 1/x*R(n+1,x) = exp(-x/2)*Sum_{i >= 0} (2 + 2*i)^n* (x/2)^i/i!. (End)

A215771 Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 3, 7, 6, 1, 0, 12, 25, 25, 10, 1, 0, 60, 127, 120, 65, 15, 1, 0, 360, 777, 742, 420, 140, 21, 1, 0, 2520, 5547, 5446, 3157, 1190, 266, 28, 1, 0, 20160, 45216, 45559, 27342, 10857, 2898, 462, 36, 1, 0, 181440, 414144, 427275, 264925, 109935, 31899, 6300, 750, 45, 1
Offset: 0

Author

Alois P. Heinz, Aug 23 2012

Keywords

Comments

Also the Bell transform of A001710. For the definition of the Bell transform see A264428 and the links given there. - Peter Luschny, Jan 21 2016

Examples

			T(4,1) = 3:  .1-2.  .1 2.  .1-2.
.            .| |.  .|X|.  . X .
.            .3-4.  .3 4.  .3-4.
.
T(4,2) = 7:  .1 2.  .1-2.  .1 2.  o1 2.  .1 2o  .1-2.  .1-2.
.            .| |.  .   .  . X .  . /|.  .|\ .  . \|.  .|/ .
.            .3 4.  .3-4.  .3 4.  .3-4.  .3-4.  o3 4.  .3 4o
.
T(4,3) = 6:  .1 2o  .1-2.  o1 2.  o1 2o  o1 2.  .1 2o
.            .|  .  .   .  .  |.  .   .  . / .  . \ .
.            .3 4o  o3 4o  o3 4.  .3-4.  .3 4o  o3 4.
.
T(4,4) = 1:  o1 2o
.            .   .
.            o3 4o
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   1,   3,   1;
  0,   3,   7,   6,   1;
  0,  12,  25,  25,  10,   1;
  0,  60, 127, 120,  65,  15,  1;
  0, 360, 777, 742, 420, 140, 21,  1;
		

Crossrefs

Columns k=0-10 give: A000007, A001710(n-1) for n>0, A215772, A215763, A215764, A215765, A215766, A215767, A215768, A215769, A215770.
Diagonal and lower diagonals give: A000012, A000217, A001296, A215773, A215774.
Row sums give A002135.
T(2n,n) gives A253276.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1,
          add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
    # Alternatively, with the function BellMatrix defined in A264428:
    BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # Peter Luschny, Jan 21 2016
  • Mathematica
    t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
    rows = 10;
    t = Table[If[n<2, 1, n!/2], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8)

A008296 Triangle of Lehmer-Comtet numbers of the first kind.

Original entry on oeis.org

1, 1, 1, -1, 3, 1, 2, -1, 6, 1, -6, 0, 5, 10, 1, 24, 4, -15, 25, 15, 1, -120, -28, 49, -35, 70, 21, 1, 720, 188, -196, 49, 0, 154, 28, 1, -5040, -1368, 944, 0, -231, 252, 294, 36, 1, 40320, 11016, -5340, -820, 1365, -987, 1050, 510, 45, 1, -362880, -98208, 34716, 9020, -7645, 3003, -1617, 2970, 825, 55, 1, 3628800
Offset: 1

Keywords

Comments

Triangle arising in the expansion of ((1+x)*log(1+x))^n.
Also the Bell transform of (-1)^(n-1)*(n-1)! if n>1 else 1 adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 16 2016

Examples

			Triangle begins:
   1;
   1,  1;
  -1,  3,   1;
   2, -1,   6,  1;
  -6,  0,   5, 10,  1;
  24,  4, -15, 25, 15, 1;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139.

Crossrefs

Cf. A039621 (second kind), A354795 (variant), A185164, A005727 (row sums), A298511 (central).
Columns: A045406 (column 2), A347276 (column 3), A345651 (column 4).
Diagonals: A000142, A000217, A059302.
Cf. A176118.

Programs

  • Maple
    for n from 1 to 20 do for k from 1 to n do
    printf(`%d,`, add(binomial(l,k)*k^(l-k)*Stirling1(n,l), l=k..n)) od: od:
    # second program:
    A008296 := proc(n, k) option remember; if k=1 and n>1 then (-1)^n*(n-2)! elif n=k then 1 else (n-1)*procname(n-2, k-1) + (k-n+1)*procname(n-1, k) + procname(n-1, k-1) end if end proc:
    seq(print(seq(A008296(n, k), k=1..n)), n=1..7); # Mélika Tebni, Aug 22 2021
  • Mathematica
    a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n-2)!;
    a[n_, n_] = 1; a[n_, k_] := a[n, k] = (n-1) a[n-2, k-1] + a[n-1, k-1] + (k-n+1) a[n-1,k]; Flatten[Table[a[n, k], {n, 1, 12}, {k, 1, n}]][[1 ;; 67]]
    (* Jean-François Alcover, Apr 29 2011 *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, n! * polcoeff(((1 + x) * log(1 + x + x * O(x^n)))^k / k!, n))}; /* Michael Somos, Nov 15 2002 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: (-1)^(n-1)*factorial(n-1) if n>1 else 1, 7) # Peter Luschny, Jan 16 2016

Formula

E.g.f. for a(n, k): (1/k!)[ (1+x)*log(1+x) ]^k. - Len Smiley
Left edge is (-1)*n!, for n >= 2. Right edge is all 1's.
a(n+1, k) = n*a(n-1, k-1) + a(n, k-1) + (k-n)*a(n, k).
a(n, k) = Sum_{m} binomial(m, k)*k^(m-k)*Stirling1(n, m).
From Peter Bala, Mar 14 2012: (Start)
E.g.f.: exp(t*(1 + x)*log(1 + x)) = Sum_{n>=0} R(n,t)*x^n/n! = 1 + t*x + (t+t^2)x^2/2! + (-t+3*t^2+t^3)x^3/3! + .... Cf. A185164. The row polynomials R(n,t) are of binomial type and satisfy the recurrence R(n+1,t) = (t-n)*R(n,t) + t*d/dt(R(n,t)) + n*t*R(n-1,t) with R(0,t) = 1 and R(1,t) = t. Inverse array is A039621.
(End)
Sum_{k=0..n} (-1)^k * a(n,k) = A176118(n). - Alois P. Heinz, Aug 25 2021

Extensions

More terms from James Sellers, Jan 26 2001
Edited by N. J. A. Sloane at the suggestion of Andrew Robbins, Dec 11 2007

A011801 Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A049223; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-4; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008546(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Triangle starts:
          1;
          4,         1;
         36,        12,        1;
        504,       192,       24,       1;
       9576,      3960,      600,      40,      1;
     229824,    100656,    17160,    1440,     60,     1;
    6664896,   3048192,   563976,   54600,   2940,    84,    1;
  226606464, 107255232, 21095424, 2256576, 142800,  5376,  112,   1;
		

Crossrefs

Cf. A028575 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), this sequence (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A011801
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Mathematica
    (* First program *)
    T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; nJean-François Alcover, Jun 20 2018 *)
    (* Second program *)
    rows = 10;
    b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
    T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs;
    A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[inverse_bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
    

Formula

T(n, m) = n!*A049223(n, m)/(m!*5^(n-m)).
T(n+1, m) = (5*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n < m, and T(n, 0) = 0, T(1, 1) = 1.
E.g.f. of n-th column: (1/n!)*( 1 - (1-5*x)^(1/5) )^n.
Sum_{k=1..n} T(n, k) = A028575(n).

Extensions

New name from Peter Luschny, Jan 16 2016

A051141 Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).

Original entry on oeis.org

1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1

Keywords

Comments

Previous name was: Generalized Stirling number triangle of first kind.
a(n,m) = R_n^m(a=0,b=3) in the notation of the given reference.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 3*j), n >= 1 and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle with diagonals d>=0 (main diagonal d=0) scaled with 3^d.
Exponential Riordan array [1/(1 + 3*x), log(1 + 3*x)/3]. The unsigned triangle is [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))]. - Paul Barry, Apr 29 2009
Also the Bell transform of the triple factorial numbers A032031 which adds a first column (1, 0, 0 ...) on the left side of the triangle and computes the unsigned values. For the definition of the Bell transform, see A264428. See A004747 for the triple factorial numbers A008544 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle starts:
       1;
      -3,       1;
      18,      -9,      1;
    -162,      99,    -18,      1;
    1944,   -1350,    315,    -30,    1;
  -29160,   22194,  -6075,    765,  -45,   1;
  524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
    3,    1;
    9,    6,    1;
   27,   27,    9,   1;
   81,  108,   54,  12,   1;
  243,  405,  270,  90,  15,  1;
  729, 1458, 1215, 540, 135, 18, 1;
  ...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
		

Crossrefs

First (m=1) column sequence is: A032031(n-1).
Row sums (signed triangle): A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A007559(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051142 (b=4).

Programs

Formula

a(n, m) = a(n-1, m-1) - 3*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) = 0 for n < m; a(n, 0) = 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 3*x)/3)^m/m!.
|a(n,1)| = A032031(n-1). - Peter Luschny, Dec 23 2015

Extensions

Name clarified using a formula of the author by Peter Luschny, Dec 23 2015

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015
Previous Showing 31-40 of 186 results. Next