cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A339656 Number of loop-graphical integer partitions of 2n.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 49, 84, 140, 229, 367, 577, 895, 1368, 2064, 3080, 4547, 6642, 9627, 13825, 19704, 27868, 39164, 54656, 75832, 104584
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2020

Keywords

Comments

An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. See A339658 for the Heinz numbers, and A339655 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the unordered prime signature of n is loop-graphical.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)    (2,2)      (3,3)          (3,3,2)
      (1,1)  (3,1)      (2,2,2)        (4,2,2)
             (2,1,1)    (3,2,1)        (4,3,1)
             (1,1,1,1)  (4,1,1)        (2,2,2,2)
                        (2,2,1,1)      (3,2,2,1)
                        (3,1,1,1)      (3,3,1,1)
                        (2,1,1,1,1)    (4,2,1,1)
                        (1,1,1,1,1,1)  (5,1,1,1)
                                       (2,2,2,1,1)
                                       (3,2,1,1,1)
                                       (4,1,1,1,1)
                                       (2,2,1,1,1,1)
                                       (3,1,1,1,1,1)
                                       (2,1,1,1,1,1,1)
                                       (1,1,1,1,1,1,1,1)
For example, there are four possible loop-graphs with degrees y = (2,2,1,1), namely
  {{1,1},{2,2},{3,4}}
  {{1,1},{2,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
  {{1,3},{1,4},{2,2}},
so y is counted under a(3). On the other hand, there are two possible loop-multigraphs with degrees z = (4,2), namely
  {{1,1},{1,1},{2,2}}
  {{1,1},{1,2},{1,2}},
but neither of these is a loop-graph, so z is not counted under a(3).
		

Crossrefs

A339658 ranks these partitions.
A001358 lists semiprimes, with squarefree case A006881.
A006125 counts labeled graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A062740 counts labeled connected loop-graphs.
A320461 ranks normal loop-graphs.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A322661 counts covering loop-graphs.
A339845 counts the same partitions by length, or A339844 with zeros.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 [this sequence] counts loop-graphical partitions (A339658).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@spsbin[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]!={}&]],{n,0,5}]

Formula

A058696(n) = a(n) + A339655(n).

Extensions

a(8)-a(25) from Andrew Howroyd, Jan 10 2024

A002135 Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.

Original entry on oeis.org

1, 1, 2, 5, 17, 73, 388, 2461, 18155, 152531, 1436714, 14986879, 171453343, 2134070335, 28708008128, 415017867707, 6416208498137, 105630583492969, 1844908072865290, 34071573484225549, 663368639907213281, 13580208904207073801
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of collections of necklaces created by using exactly n different colored beads (to make the entire collection). - Geoffrey Critzer, Apr 19 2009
a(n) is the number of ways that a deck with 2 cards of each of n types may be dealt into n hands of 2 cards each, assuming that the order of the hands and the order of the cards in each hand are irrelevant. See the Art of Problem Solving link for proof. - Joel B. Lewis, Sep 30 2012
From Bruce Westbury, Jan 22 2013: (Start)
It follows from the respective exponential generating functions that A002135 is the binomial transform of A002137:
A002135(n) = Sum_{k=0..n} binomial(n,k)*A002137(k),
2 = 1.1 + 2.0 + 1.1,
5 = 1.1 + 3.0 + 3.1 + 1.1,
17 = 1.1 + 4.0 + 6.1 + 4.1 + 1.6, ...
A002137 arises from looking at the dimension of the space of invariant tensors of the r-th tensor power of the adjoint representation of the symplectic group Sp(2n) (for n large compared to r).
(End)
a(n) is the number of representations required for the symbolic central moments of order 2 for the multivariate normal distribution, that is, E[X1^2 X2^2 .. Xn^2|mu=0, Sigma] (Phillips 2010). These representations are the upper-triangular, positive integer matrices for which for each i, the sum of the i-th row and i-th column equals 2, the power of each component. This can be shown starting from the formulation by Joel B Lewis. See "Proof for multivariate normal moments" link below for a proof. - Kem Phillips, Aug 20 2014
Equivalent to Critzer's comment, a(n) is the number of ways to cover n labeled vertices by disjoint undirected cycles, hence the exponential transform of A001710(n - 1). - Gus Wiseman, Oct 20 2018

Examples

			For n = 3, the a(3) = 5 ways to deal out the deck {1, 1, 2, 2, 3, 3} into three two-card hands are {11, 22, 33}, {12, 12, 33}, {13, 13, 22}, {11, 23, 23}, {12, 13, 23}. - _Joel B. Lewis_, Sep 30 2012
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, a_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.9 and Problem 5.22.

Crossrefs

A diagonal of A260338.
Row sums of A215771.
Column k=2 of A257463 and A333467.

Programs

  • Maple
    G:=proc(n) option remember; if n <= 1 then 1 elif n=2 then
    2 else n*G(n-1)-binomial(n-1,2)*G(n-3); fi; end;
  • Mathematica
    a[x_]:=Log[1/(1-x)^(1/2)]+x/2+x^2/4;Range[0, 20]! CoefficientList[Series[Exp[a[x]], {x, 0, 20}], x]
    RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-1]-(n-1)(n-2)* a[n-3]/2}, a,{n,30}] (* Harvey P. Dale, Dec 16 2011 *)
    Table[Sum[Binomial[k, i] Binomial[i - 1/2, n - k] (3^(k - i) n!)/(4^k k!) (-1)^(n - k - i), {k, 0, n}, {i, 0, k}], {n, 0, 12}] (* Emanuele Munarini, Aug 25 2017 *)
  • Maxima
    a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i),i,0,k),k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
  • PARI
    a(n) = if(n<3, [1,1,2][n+1], n*a(n-1) - (n-1)*(n-2)*a(n-3)/2 ); /* Joerg Arndt, Apr 07 2013 */
    

Formula

E.g.f.: (1-x)^(-1/2)*exp(x/2+x^2/4).
D-finite with recurrence a(n+1) = (n+1)*a(n) - binomial(n, 2)*a(n-2). See Comtet.
Asymptotics: a(n) ~ sqrt(2)*exp(3/4-n)*n^n*(1+O(1/n)). - Pietro Majer, Oct 27 2009
E.g.f.: G(0)/sqrt(1-x) where G(k) = 1 + x*(x+2)/(4*(2*k+1) - 4*x*(x+2)*(2*k+1)/(x*(x+2) + 8*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
a(n) = Sum_{k=0..n} Sum_{i=0..k} binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i). - Emanuele Munarini, Aug 25 2017

A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 14, 23, 27, 41, 47, 70, 84, 114, 141, 190, 225, 303, 370, 475, 578, 738, 890, 1131, 1368, 1698, 2058, 2549, 3048, 3759, 4505, 5495, 6574, 7966, 9483, 11450, 13606, 16307, 19351, 23116, 27297, 32470, 38293, 45346, 53342, 62939
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a non-graphical partition.

Examples

			The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot):
  11   .   22     2111   33       2221     44         3222       55
           1111          2211     4111     2222       6111       3322
                         3111     211111   3311       222111     3331
                         111111            5111       321111     4222
                                           221111     411111     4411
                                           311111     21111111   7111
                                           11111111              222211
                                                                 322111
                                                                 331111
                                                                 421111
                                                                 511111
                                                                 22111111
                                                                 31111111
                                                                 1111111111
For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
None of these are strict, so y is counted under a(22).
		

Crossrefs

A320894 ranks these partitions (using Heinz numbers).
A338915 allows equal pairs (x,x).
A339560 counts the complement in even-length partitions.
A339564 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}]

Formula

A027187(n) = a(n) + A339560(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339658 Heinz numbers of loop-graphical partitions (of even numbers).

Original entry on oeis.org

1, 3, 4, 9, 10, 12, 16, 25, 27, 28, 30, 36, 40, 48, 63, 64, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 147, 160, 175, 189, 192, 196, 198, 208, 210, 220, 225, 243, 250, 252, 256, 264, 270, 280, 300, 324, 336, 343, 352, 360, 400, 432, 441, 448, 462, 468, 480
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320912.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms > 1 together with their prime indices begins:
      3: {2}               70: {1,3,4}          192: {1,1,1,1,1,1,2}
      4: {1,1}             75: {2,3,3}          196: {1,1,4,4}
      9: {2,2}             81: {2,2,2,2}        198: {1,2,2,5}
     10: {1,3}             84: {1,1,2,4}        208: {1,1,1,1,6}
     12: {1,1,2}           88: {1,1,1,5}        210: {1,2,3,4}
     16: {1,1,1,1}         90: {1,2,2,3}        220: {1,1,3,5}
     25: {3,3}            100: {1,1,3,3}        225: {2,2,3,3}
     27: {2,2,2}          108: {1,1,2,2,2}      243: {2,2,2,2,2}
     28: {1,1,4}          112: {1,1,1,1,4}      250: {1,3,3,3}
     30: {1,2,3}          120: {1,1,1,2,3}      252: {1,1,2,2,4}
     36: {1,1,2,2}        144: {1,1,1,1,2,2}    256: {1,1,1,1,1,1,1,1}
     40: {1,1,1,3}        147: {2,4,4}          264: {1,1,1,2,5}
     48: {1,1,1,1,2}      160: {1,1,1,1,1,3}    270: {1,2,2,2,3}
     63: {2,2,4}          175: {3,3,4}          280: {1,1,1,3,4}
     64: {1,1,1,1,1,1}    189: {2,2,2,4}        300: {1,1,2,3,3}
For example, the four loop-graphs with degrees y = (3,1,1,1) are:
  {{1,1},{1,2},{3,4}}
  {{1,1},{1,3},{2,4}}
  {{1,1},{1,4},{2,3}}
  {{1,2},{1,3},{1,4}},
so the Heinz number 40 is in the sequence. On the other hand, the three loop-multigraphs with degrees y = (4,4) are
  {{1,1},{1,1},{2,2},{2,2}}
  {{1,1},{1,2},{1,2},{2,2}}
  {{1,2},{1,2},{1,2},{1,2}},
but none of these is a loop-graph, so the Heinz number 49 is not in the sequence.
		

Crossrefs

A320912 has these prime shadows (see A181819).
A339656 counts these partitions.
A339657 ranks the complement, counted by A339655.
A001358 lists semiprimes, with squarefree case A006881.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A338914 can be partitioned into strict pairs (A320911).
- A338916 can be partitioned into distinct pairs (A320912).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[25],Select[mpsbin[nrmptn[#]],UnsameQ@@#&]!={}&]

Formula

A339114 Least semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

Converges to A100484.
After a(4) = 9, also the least squarefree semiprime whose prime indices sum to n.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}     106: {1,16}    254: {1,31}
      6: {1,2}     118: {1,17}    262: {1,32}
      9: {2,2}     122: {1,18}    274: {1,33}
     14: {1,4}     134: {1,19}    278: {1,34}
     21: {2,4}     142: {1,20}    298: {1,35}
     26: {1,6}     146: {1,21}    302: {1,36}
     34: {1,7}     158: {1,22}    314: {1,37}
     38: {1,8}     166: {1,23}    326: {1,38}
     46: {1,9}     178: {1,24}    334: {1,39}
     58: {1,10}    194: {1,25}    346: {1,40}
     62: {1,11}    202: {1,26}    358: {1,41}
     74: {1,12}    206: {1,27}    362: {1,42}
     82: {1,13}    214: {1,28}    382: {1,43}
     86: {1,14}    218: {1,29}    386: {1,44}
     94: {1,15}    226: {1,30}    394: {1,45}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A332765/A332877 is the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Mathematica
    Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
    Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020

A339657 Heinz numbers of non-loop-graphical partitions of even numbers.

Original entry on oeis.org

7, 13, 19, 21, 22, 29, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 154, 155, 156, 159, 163, 165, 166, 169, 171
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320892.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656, with Heinz numbers A339658.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
      7: {4}         57: {2,8}      107: {28}
     13: {6}         61: {18}       111: {2,12}
     19: {8}         62: {1,11}     113: {30}
     21: {2,4}       66: {1,2,5}    115: {3,9}
     22: {1,5}       71: {20}       116: {1,1,10}
     29: {10}        76: {1,1,8}    117: {2,2,6}
     34: {1,7}       79: {22}       118: {1,17}
     37: {12}        82: {1,13}     121: {5,5}
     39: {2,6}       85: {3,7}      129: {2,14}
     43: {14}        87: {2,10}     130: {1,3,6}
     46: {1,9}       89: {24}       131: {32}
     49: {4,4}       91: {4,6}      133: {4,8}
     52: {1,1,6}     94: {1,15}     134: {1,19}
     53: {16}       101: {26}       136: {1,1,1,7}
     55: {3,5}      102: {1,2,7}    138: {1,2,9}
For example, the three loop-multigraphs with degrees y = (5,2,1) are:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a loop-graph (they have multiple edges), the Heinz number 66 is in the sequence.
		

Crossrefs

A320892 has these prime shadows (see A181819).
A321728 is conjectured to be the version for half-loops {x} instead of loops {x,x}.
A339655 counts these partitions.
A339658 ranks the complement, counted by A339656.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339844 counts loop-graphical partitions by length.
factorizations of n into distinct primes or squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657 [this sequence]).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[50],EvenQ[Length[nrmptn[#]]]&&Select[mpsbin[nrmptn[#]],UnsameQ@@#&]=={}&]

Formula

A332765 Consider all permutations p_i of the first n primes; a(n) is the minimum over p_i of the maximal product of two adjacent primes in the permutation.

Original entry on oeis.org

6, 10, 15, 22, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807
Offset: 2

Views

Author

Bobby Jacobs, Apr 23 2020

Keywords

Comments

The optimal permutation of n primes is {p_n, p_1, p_n-1, p_2, …, p_ceiling(n/2)}. - Ivan N. Ianakiev, Apr 28 2020
Also the greatest squarefree semiprime whose prime indices sum to n + 1. A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 06 2020

Examples

			Here are the ways (up to reversal) to order the first four primes:
  2, 3, 5, 7: Products: 6, 15, 35;  Largest product: 35
  2, 3, 7, 5: Products: 6, 21, 35;  Largest product: 35
  2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
  2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
  2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
  2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
  3, 2, 5, 7: Products: 6, 10, 35;  Largest product: 35
  3, 2, 7, 5: Products: 6, 14, 35;  Largest product: 35
  3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
  3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
  5, 2, 3, 7: Products: 10, 6, 21;  Largest product: 21
  5, 3, 2, 7: Products: 15, 6, 14;  Largest product: 15
The minimum largest product is 15, so a(4) = 15.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime indices begins:
      6: {1,2}     551: {8,10}    3127: {16,17}
     10: {1,3}     667: {9,10}    3233: {16,18}
     15: {2,3}     713: {9,11}    3599: {17,18}
     22: {1,5}     899: {10,11}   3953: {17,19}
     35: {3,4}    1073: {10,12}   4189: {17,20}
     55: {3,5}    1189: {10,13}   4331: {18,20}
     77: {4,5}    1271: {11,13}   4757: {19,20}
     91: {4,6}    1517: {12,13}   4897: {17,23}
    143: {5,6}    1591: {12,14}   5293: {19,22}
    187: {5,7}    1763: {13,14}   5723: {17,25}
    221: {6,7}    1961: {12,16}   5963: {19,24}
    253: {5,9}    2183: {12,17}   6499: {19,25}
    323: {7,8}    2419: {13,17}   6887: {20,25}
    391: {7,9}    2537: {14,17}   7171: {20,26}
    493: {7,10}   2773: {15,17}   7663: {22,25}
(End)
		

Crossrefs

A338904 and A338905 have this sequence as row maxima.
A339115 is the not necessarily squarefree version.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339114 is the least (squarefree) semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    primes[n_]:=Reverse[Prime/@Range[n]]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]];
    riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]];
    a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]];a/@Range[2,53]
    (* Ivan N. Ianakiev, Apr 28 2020 *)

Formula

It appears that a(n) = A332877(n - 1) for n > 5.

Extensions

a(12)-a(13) from Jinyuan Wang, Apr 24 2020
More terms from Ivan N. Ianakiev, Apr 28 2020

A338906 Semiprimes whose prime indices sum to an even number.

Original entry on oeis.org

4, 9, 10, 21, 22, 25, 34, 39, 46, 49, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 121, 129, 133, 134, 146, 155, 159, 166, 169, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 289, 295, 298, 301, 303, 314, 321, 334, 335, 339
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}      87: {2,10}    183: {2,18}    274: {1,33}
      9: {2,2}      91: {4,6}     187: {5,7}     289: {7,7}
     10: {1,3}      94: {1,15}    194: {1,25}    295: {3,17}
     21: {2,4}     111: {2,12}    203: {4,10}    298: {1,35}
     22: {1,5}     115: {3,9}     205: {3,13}    301: {4,14}
     25: {3,3}     118: {1,17}    206: {1,27}    303: {2,26}
     34: {1,7}     121: {5,5}     213: {2,20}    314: {1,37}
     39: {2,6}     129: {2,14}    218: {1,29}    321: {2,28}
     46: {1,9}     133: {4,8}     235: {3,15}    334: {1,39}
     49: {4,4}     134: {1,19}    237: {2,22}    335: {3,19}
     55: {3,5}     146: {1,21}    247: {6,8}     339: {2,30}
     57: {2,8}     155: {3,11}    253: {5,9}     341: {5,11}
     62: {1,11}    159: {2,16}    254: {1,31}    358: {1,41}
     82: {1,13}    166: {1,23}    259: {4,12}    361: {8,8}
     85: {3,7}     169: {6,6}     267: {2,24}    365: {3,21}
		

Crossrefs

A031215 looks at primes instead of semiprimes.
A098350 has this as union of even-indexed antidiagonals.
A300061 looks at all numbers (not just semiprimes).
A338904 has this as union of even-indexed rows.
A338907 is the odd version.
A338908 is the squarefree case.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338911 lists products of pairs of primes both of even index.
A339114/A339115 give the least/greatest semiprime of weight n.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&EvenQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338906(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1),-1))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

A339620 Heinz numbers of non-multigraphical partitions of even numbers.

Original entry on oeis.org

3, 7, 10, 13, 19, 21, 22, 28, 29, 34, 37, 39, 43, 46, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 88, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 155, 156, 159, 163, 166, 171, 172, 173
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

An integer partition is non-multigraphical if it does not comprise the multiset of vertex-degrees of any multigraph (multiset of non-loop edges). Multigraphical partitions are counted by A209816, non-multigraphical partitions by A000070.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime indices of n can be partitioned into strict pairs (a multiset of edges);
(2) n can be factored into squarefree semiprimes;
(3) the unordered prime signature of n is multigraphical.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         53: {16}          94: {1,15}
      7: {4}         55: {3,5}        101: {26}
     10: {1,3}       57: {2,8}        102: {1,2,7}
     13: {6}         61: {18}         107: {28}
     19: {8}         62: {1,11}       111: {2,12}
     21: {2,4}       66: {1,2,5}      113: {30}
     22: {1,5}       71: {20}         115: {3,9}
     28: {1,1,4}     76: {1,1,8}      116: {1,1,10}
     29: {10}        79: {22}         117: {2,2,6}
     34: {1,7}       82: {1,13}       118: {1,17}
     37: {12}        85: {3,7}        129: {2,14}
     39: {2,6}       87: {2,10}       130: {1,3,6}
     43: {14}        88: {1,1,1,5}    131: {32}
     46: {1,9}       89: {24}         133: {4,8}
     52: {1,1,6}     91: {4,6}        134: {1,19}
For example, a complete lists of all loop-multigraphs with degrees (5,2,1) is:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a multigraph (they have loops), the Heinz number 66 belongs to the sequence.
		

Crossrefs

A000070 counts these partitions.
A300061 is a superset.
A320891 has image under A181819 equal to this set of terms.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620 [this sequence]).
- A209816 counts multigraphical partitions (A320924).
- A147878 counts connected multigraphical partitions (A320925).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Select[Subsets[Union[m],{2}],MemberQ[#,m[[1]]]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&&prpts[nrmptn[#]]=={}&]

Formula

Equals A300061 \ A320924.
For all n, both A181821(a(n)) and A304660(a(n)) belong to A320891.

A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2018

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - Gus Wiseman, Dec 31 2020
Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ...

Examples

			a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480:
  4*15   6*35    4*6*35    4*9*35    4*15*77    4*6*15*35    4*6*10*77
  6*10   10*21   4*10*21   4*15*21   4*21*55    4*6*21*25    4*6*14*55
         14*15   4*14*15   6*10*21   4*33*35    4*9*10*35    4*6*22*35
                 6*10*14   6*14*15   6*10*77    4*9*14*25    4*10*14*33
                           9*10*14   6*14*55    4*10*15*21   4*10*21*22
                                     6*22*35    6*10*14*15   4*14*15*22
                                     10*14*33                6*10*14*22
                                     10*21*22
                                     14*15*22
(End)
		

Crossrefs

Unlabeled multiset partitions of this type are counted by A007717.
The version for partitions is A112020, or A101048 without distinctness.
The non-strict version is A320655.
Positions of zeros include A320892.
Positions of nonzero terms are A320912.
The case of squarefree factors is A339661, or A320656 without distinctness.
Allowing prime factors gives A339839, or A320732 without distinctness.
A322661 counts loop-graphs, ranked by A320461.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A037143 lists primes and semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A339846 counts even-length factorizations, with ordered version A174725.

Programs

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - Gus Wiseman, Dec 31 2020
Previous Showing 31-40 of 63 results. Next