A000302 Powers of 4: a(n) = 4^n.
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
Offset: 0
References
- H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 5.
- R. K. Guy, Letter to N. J. A. Sloane
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 8
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 269
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Tanya Khovanova, Recursive Sequences
- Craig Knecht, Number of tilings for a 6 sphinx tile repetitive unit.
- Walter G. Kropatsch, A pyramid that grows by powers of 2, Pattern Recognition Letters, Vol. 3, No. 5 (1985), 315-322 [Subscription required].
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Robert Price, Comments on A000302 concerning Elementary Cellular Automata, Feb 26 2016.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9., 2016.
- Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv preprint arXiv:1504.04404 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Barbell Graph
- Eric Weisstein's World of Mathematics, Cantor Dust
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (4).
- Index entries for sequences related to Benford's law
Programs
-
Haskell
a000302 = (4 ^) a000302_list = iterate (* 4) 1 -- Reinhard Zumkeller, Apr 04 2012
-
Maple
A000302 := n->4^n; for n from 0 to 10 do sum(2^(n-j)*binomial(n+j,j),j=0..n); od; # Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007 A000302:=-1/(-1+4*z); # Simon Plouffe in his 1992 dissertation.
-
Mathematica
Table[4^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *) CoefficientList[Series[1/(1 - 4 x), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2014 *) NestList[4 # &, 1, 30] (* Harvey P. Dale, Mar 26 2015 *) 4^Range[0, 30] (* Eric W. Weisstein, Jun 29 2017 *) LinearRecurrence[{4}, {1}, 31] (* Robert A. Russell, Nov 08 2018 *)
-
Maxima
A000302(n):=4^n$ makelist(A000302(n),n,0,30); /* Martin Ettl, Oct 24 2012 */
-
PARI
A000302(n)=4^n \\ Michael B. Porter, Nov 06 2009
-
Python
print([4**n for n in range(25)]) # Michael S. Branicky, Jan 04 2021
-
Python
is_A000302 = lambda n: n.bit_count()==1 and n.bit_length()&1 # M. F. Hasler, Nov 25 2024
-
SageMath
[4**n for n in range(0,25)] # Stefano Spezia, Jul 23 2025
-
Scala
(List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jun 22 2019
Formula
a(n) = 4^n.
a(0) = 1; a(n) = 4*a(n-1).
G.f.: 1/(1-4*x).
E.g.f.: exp(4*x).
a(n) = Sum_{k = 0..n} binomial(2k, k) * binomial(2(n - k), n - k). - Benoit Cloitre, Jan 26 2003 [See Graham et al., eq. (5.39), p. 187. - Wolfdieter Lang, Aug 16 2019]
1 = Sum_{n >= 1} 3/a(n) = 3/4 + 3/16 + 3/64 + 3/256 + 3/1024, ...; with partial sums: 3/4, 15/16, 63/64, 255/256, 1023/1024, ... - Gary W. Adamson, Jun 16 2003
a(n) = Sum_{j = 0..n} 2^(n - j)*binomial(n + j, j). - Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
Hankel transform of A115967. - Philippe Deléham, Jun 22 2007
a(n) = 6*Stirling2(n+1, 4) + 6*Stirling2(n+1, 3) + 3*Stirling2(n+1, 2) + 1 = 2*Stirling2(2^n, 2^n - 1) + Stirling2(n+1, 2) + 1. - Ross La Haye, Jun 26 2008
a(n) = A159991(n)/A001024(n) = A047653(n) + A181765(n). A160700(a(n)) = A010685(n). - Reinhard Zumkeller, May 02 2009
a(n) = Sum_{k = 0..n} binomial(2*n+1, k). - Mircea Merca, Jun 25 2011
Sum_{n >= 1} Mobius(n)/a(n) = 0.1710822479183... - R. J. Mathar, Aug 12 2012
a(n) = Sum_{k = 0..n} binomial(2*k + x, k)*binomial(2*(n - k) - x, n - k) for every real number x. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = 5*a(n - 1) - 4*a(n - 2). - Jean-Bernard François, Sep 12 2013
a(n) = (2*n+1) * binomial(2*n,n) * Sum_{j=0..n} (-1)^j/(2*j+1)*binomial(n,j). - Vaclav Kotesovec, Sep 15 2013
a(n) = (1/2) * Product_{k = 0..n} (1 + (2*n + 1)/(2*k + 1)). - Peter Bala, Mar 06 2018
a(n) = denominator(zeta_star({2}(n + 1))/zeta(2*n + 2)) where zeta_star is the multiple zeta star values and ({2}_n) represents (2, ..., 2) where the multiplicity of 2 is n. - _Roudy El Haddad, Feb 22 2022
a(n) = 1 + 3*Sum_{k=0..n} binomial(2*n, n+k)*(k|9), where (k|9) is the Jacobi symbol. - Greg Dresden, Oct 11 2022
a(n) = Sum_{k = 0..n} binomial(2*n+1, 2*k) = Sum_{k = 0..n} binomial(2*n+1, 2*k+1). - Sela Fried, Mar 23 2023
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments