A001108 a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.
0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 0
Examples
a(1) = ((3 + 2*sqrt(2)) + (3 - 2*sqrt(2)) - 2) / 4 = (3 + 3 - 2) / 4 = 4 / 4 = 1; a(2) = ((3 + 2*sqrt(2))^2 + (3 - 2*sqrt(2))^2 - 2) / 4 = (9 + 4*sqrt(2) + 8 + 9 - 4*sqrt(2) + 8 - 2) / 4 = (18 + 16 - 2) / 4 = (34 - 2) / 4 = 32 / 4 = 8, etc.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
- M. S. Klamkin, "International Mathematical Olympiads 1978-1985," (Supplementary problem N.T.6)
- W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 21-22 MR2002669
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1304 (terms 0..200 from T. D. Noe)
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- M. A. Asiru, All square chiliagonal numbers, Int J Math Edu Sci Technol, 47:7(2016), 1123-1134.
- Elwyn Berlekamp and Joe P. Buhler, Puzzle Column, Emissary, MSRI Newsletter, Fall 2005. Problem 1, (6 MB).
- Henk Bruin and Robbert Fokkink, On the records and zeros of a deterministic random walk, arXiv:2503.11734 [math.DS], 2025. See p. 5.
- Zongyun Chen, Steven J. Miller, and Chenghan Wu, Geometric Proof of the Irrationality of Square-Roots for Select Integers, arXiv:2410.14434 [math.HO], 2024. See pp. 10-11.
- Leonhard Euler, De solutione problematum diophanteorum per numeros integros, Par. 19.
- H. G. Forder, A Simple Proof of a Result on Diophantine Approximation, Math. Gaz., 47 (1963), 237-238.
- Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020.
- D. B. Hayes, Calculemus!, American Scientist, 96 (Sep-Oct 2008), 362-366.
- Olcay Karaatli and Refik Keskin, On some diophantine equations related to square triangular and balancing numbers, J. Alg. Number Theory 4 (2) (2010) 71-89.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- P. Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- MSRI newsletter, Emissary, Fall 2005.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2020.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- K. Ramsey, Generalized Proof re Square Triangular Numbers.
- K. Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005 - Oct 10, 2011.
- D. L. Vestal, Review of "Pythagorean Triangles" (Chapter 4) by W. Sierpiński.
- Eric Weisstein's World of Mathematics, Square Triangular Number.
- Eric Weisstein's World of Mathematics, Triangular Number.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
- Index entries for two-way infinite sequences
Crossrefs
Programs
-
Haskell
a001108 n = a001108_list !! n a001108_list = 0 : 1 : map (+ 2) (zipWith (-) (map (* 6) (tail a001108_list)) a001108_list) -- Reinhard Zumkeller, Jan 10 2012
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018 -
Maple
A001108:=-(1+z)/(z-1)/(z**2-6*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0
-
Mathematica
Table[(1/2)(-1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n - (3 - 2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *) Transpose[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]+2}&,{0,1,8},20]][[1]] (* Harvey P. Dale, Sep 04 2011 *) LinearRecurrence[{7, -7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
-
PARI
a(n)=(real((3+quadgen(32))^n)-1)/2
-
PARI
a(n)=(subst(poltchebi(abs(n)),x,3)-1)/2
-
PARI
a(n)=if(n<0,a(-n),(polsym(1-6*x+x^2,n)[n+1]-2)/4)
-
PARI
x='x+O('x^99); concat(0, Vec(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Altug Alkan, May 01 2018
Formula
a(0) = 0, a(n+1) = 3*a(n) + 1 + 2*sqrt(2*a(n)*(a(n)+1)). - Jim Nastos, Jun 18 2002
a(n) = floor( (1/4) * (3+2*sqrt(2))^n ). - Benoit Cloitre, Sep 04 2002
a(n) = A001653(k)*A001653(k+n) - A001652(k)*A001652(k+n) - A046090(k)*A046090(k+n). - Charlie Marion, Jul 01 2003
a(n) = A001652(n-1) + A001653(n-1) = A001653(n) - A046090(n) = (A001541(n)-1)/2 = a(-n). - Michael Somos, Mar 03 2004
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Antonio Alberto Olivares, Oct 23 2003
a(n) = Sum_{r=1..n} 2^(r-1)*binomial(2n, 2r). - Lekraj Beedassy, Aug 21 2004
If n > 1, then both A000203(n) and A000203(n+1) are odd numbers: n is either a square or twice a square. - Labos Elemer, Aug 23 2004
a(n) = (T(n, 3)-1)/2 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n). - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-6*x+x^2)). Binet form: a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n - 2)/4. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
a(n) = floor(sqrt(2*A001110(n))) = floor(A001109(n)*sqrt(2)) = 2*(A000129(n)^2) - (n mod 2) = A001333(n)^2 - 1 + (n mod 2). - Henry Bottomley, Apr 19 2000, corrected by Eric Rowland, Jun 23 2017
A072221(n) = 3*a(n) + 1. - David Scheers, Dec 25 2006
a(n+1)^2 + a(n)^2 + 1 = 6*a(n+1)*a(n) + 2*a(n+1) + 2*a(n). - Charlie Marion, Sep 28 2011
a(n) = 2*A001653(m)*A053141(n-m-1) + A002315(m)*A046090(n-m-1) + a(m) with m < n; otherwise, a(n) = 2*A001653(m)*A053141(m-n) - A002315(m)*A001652(m-n) + a(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = A048739(2n-2), n > 0. - Richard R. Forberg, Aug 31 2013
From Peter Bala, Jan 28 2014: (Start)
A divisibility sequence: that is, a(n) divides a(n*m) for all n and m. Case P1 = 8, P2 = 12, Q = 1 of the 3-parameter family of linear divisibility sequences found by Williams and Guy.
(2,1) entry of the 2 X 2 matrix T(n,M), where M = [0, -3; 1, 4] and T(n,x) is the Chebyshev polynomial of the first kind. (End)
E.g.f.: exp(x)*(exp(2*x)*cosh(2*sqrt(2)*x) - 1)/2. - Stefano Spezia, Oct 25 2024
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
More terms from Lekraj Beedassy, Aug 21 2004
Comments