A002426 Central trinomial coefficients: largest coefficient of (1 + x + x^2)^n.
1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, 212941, 616227, 1787607, 5196627, 15134931, 44152809, 128996853, 377379369, 1105350729, 3241135527, 9513228123, 27948336381, 82176836301, 241813226151, 712070156203, 2098240353907, 6186675630819
Offset: 0
Examples
For n = 2, (x^2 + x + 1)^2 = x^4 + 2*x^3 + 3*x^2 + 2*x + 1, so a(2) = 3. - _Michael B. Porter_, Sep 06 2016
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 78 and 163, #19.
- L. Euler, Exemplum Memorabile Inductionis Fallacis, Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
- P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 579.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 6.3.8.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 22.
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346. See p. 341.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- George E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
- George E. Andrews, Euler's 'exemplum memorabile inductionis fallacis' and q-trinomial coefficients, J. Amer. Math. Soc. 3 (1990) 653-669.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- E. Barcucci, R. Pinzani and R. Sprugnoli, The Motzkin family, P.U.M.A. Ser. A, Vol. 2, 1991, No. 3-4, pp. 249-279.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
- Frank R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- N. M. Bogoliubov, Enumerative combinatorics of XX0 Heisenberg chain, Scientific Notes, POMI Workshops, Russian Academy of Sciences (St. Petersburg, Russia, 2019), Vol. 487.
- Jan Bok, Graph-indexed random walks on special classes of graphs, arXiv:1801.05498 [math.CO], 2018.
- Johann Cigler, Some nice Hankel determinants. arXiv preprint arXiv:1109.1449 [math.CO], 2011.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, J. Integer. Seq., Vol. 16 (2013), #13.1.3. - From _N. J. A. Sloane_, Feb 03 2013
- Steffen Eger, Stirling's Approximation for Central Extended Binomial Coefficients, American Mathematical Monthly, 121 (2014), 344-349.
- Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207 [math.CO], 2011.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.
- Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2=x^5-x and y^2=x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 14 2012
- Rigoberto Flórez, Leandro Junes and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
- R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission. See Problem 85:03.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990) 3-20, esp. 18-19.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
- Po-Yi Huang, Shu-Chung Liu, and Yeong-Nan Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- Cynthia Huffman, Analytical Observations (Translation of E326), Euleriana (2023) Vol. 3, Issue 1.
- Anders Hyllengren, Four integer sequences, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.
- Veronika Irvine, Stephen Melczer and Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
- L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43. [Annotated scanned copy]
- Nadav Kohen, Density and Symmetry in the Generalized Motzkin Numbers mod p, arXiv:2411.03681 [math.CO], 2024. See p. 2.
- Dmitry Kruchinin and Vladimir Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.
- Shara Lalo and Zagros Lalo, Formula for the Central terms in triangle A027907 ((1 + x + x^2)^n).
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Andrew Lohr, Several Topics in Experimental Mathematics, arXiv:1805.00076 [math.CO], 2018.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See pp. 28, 32.
- Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Thorsten Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- Paul Peart and Wen-Jin Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
- Ed. Pegg, Jr., Number of combinations of n coins when have 3 kinds of coin
- E. Pergola, R. Pinzani, S. Rinaldi and R. A. Sulanke, A bijective approach to the area of generalized Motzkin paths, Adv. Appl. Math., 28, 2002, 580-591.
- José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
- José L. Ramírez and Víctor F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
- Dan Romik, Some formulas for the central trinomial and Motzkin numbers, J. Integer Seqs., Vol. 6, 2003.
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
- Michelle Rudolph-Lilith and Lyle E. Muller, On an explicit representation of central (2k+1)-nomial coefficients, arXiv preprint arXiv:1403.5942 [math.CO], 2014.
- Michelle Rudolph-Lilith and Lyle E. Muller, On a link between Dirichlet kernels and central multinomial coefficients, Discrete Mathematics, Volume 338, Issue 9, Sep 06 2015, Pages 1567-1572.
- Jesus Salas and Alan D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009; J. Stat. Phys. 135 (2009) 279-373, arXiv:0711.1738 [cond-mat.stat-mech]. Mentions this sequence.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
- T. Sillke, Middle Trinomial Coefficient
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Robert A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
- Zhi-Wei Sun, Conjectures involving combinatorial sequences, arXiv preprint arXiv:1208.2683 [math.CO], 2012. - _N. J. A. Sloane_, Dec 25 2012
- Zhi-Wei Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. - _N. J. A. Sloane_, Dec 28 2012
- Zhi-Wei Sun, On central trinomial coefficients, Question 491563 at MathOverflow, April 23, 2025.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
- Dennis P. Walsh, The Probability of a Tie in a Three Candidate Election.
- Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
- Chenying Wang, Piotr Miska, and István Mező, The r-derangement numbers, Discrete Mathematics 340.7 (2017): 1681-1692.
- Chen Wang, Supercongruences and hypergeometric transformations, arXiv:2003.09888 [math.NT], 2020.
- Chen Wang and Zhi-Wei Sun, Congruences involving central trinomial coefficients, arXiv:1910.06850 [math.NT], 2019.
- Eric Weisstein's World of Mathematics, Central Trinomial Coefficient and Trinomial Coefficient.
- Doron Zeilberger, Analogs of the Richard Stanley Amer. Math. Monthly Problem 11610 for ALL pairs of words of length, 2, in an alphabet of, 3 letters. See Proposition 5.
- Doron Zeilberger, Analogs of the Richard Stanley Amer. Math. Monthly Problem 11610 for ALL pairs of words of length, 2, in an alphabet of, 3 letters. [Local copy]
- Index entries for sequences of k-nomial coefficients
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a002426 n = a027907 n n -- Reinhard Zumkeller, Jan 22 2013
-
Magma
P
:=PolynomialRing(Integers()); [Max(Coefficients((1+x+x^2)^n)): n in [0..26]]; // Bruno Berselli, Jul 05 2011 -
Maple
A002426 := proc(n) local k; sum(binomial(n, k)*binomial(n-k, k), k=0..floor(n/2)); end proc: # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 # Alternatively: a := n -> simplify(GegenbauerC(n,-n,-1/2)): seq(a(n), n=0..29); # Peter Luschny, May 07 2016
-
Mathematica
Table[ CoefficientList[ Series[(1 + x + x^2)^n, {x, 0, n}], x][[ -1]], {n, 0, 27}] (* Robert G. Wilson v *) a=b=1; Join[{a,b}, Table[c=((2n-1)b + 3(n-1)a)/n; a=b; b=c; c, {n,2,100}]]; Table[Sqrt[-3]^n LegendreP[n,1/Sqrt[-3]],{n,0,26}] (* Wouter Meeussen, Feb 16 2013 *) a[ n_] := If[ n < 0, 0, 3^n Hypergeometric2F1[ 1/2, -n, 1, 4/3]]; (* Michael Somos, Jul 08 2014 *) Table[4^n *JacobiP[n,-n-1/2,-n-1/2,-1/2], {n,0,29}] (* Peter Luschny, May 13 2016 *) a[n_] := a[n] = Sum[n!/((n - 2*i)!*(i!)^2), {i, 0, n/2}]; Table[a[n], {n, 0, 29}] (* Shara Lalo and Zagros Lalo, Oct 03 2018 *)
-
Maxima
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k); makelist(trinomial(n,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
-
Maxima
makelist(ultraspherical(n,-n,-1/2),n,0,12); /* Emanuele Munarini, Dec 20 2016 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, n))};
-
PARI
/* as lattice paths: same as in A092566 but use */ steps=[[2, 0], [0, 2], [1, 1]]; /* Joerg Arndt, Jul 01 2011 */
-
PARI
a(n)=polcoeff(sum(m=0, n, (2*m)!/m!^2 * x^(2*m) / (1-x+x*O(x^n))^(2*m+1)), n) \\ Paul D. Hanna, Sep 21 2013
-
Python
from math import comb def A002426(n): return sum(comb(n,k)*comb(k,n-k) for k in range(n+1)) # Chai Wah Wu, Nov 15 2022
-
Sage
A002426 = lambda n: hypergeometric([-n/2, (1-n)/2], [1], 4) [simplify(A002426(n)) for n in (0..29)] # Peter Luschny, Sep 17 2014
-
Sage
def A(): a, b, n = 1, 1, 1 yield a while True: yield b n += 1 a, b = b, ((3 * (n - 1)) * a + (2 * n - 1) * b) // n A002426 = A() print([next(A002426) for in range(30)]) # _Peter Luschny, May 16 2016
Formula
G.f.: 1/sqrt(1 - 2*x - 3*x^2).
E.g.f.: exp(x)*I_0(2x), where I_0 is a Bessel function. - Michael Somos, Sep 09 2002
a(n) = 2*A027914(n) - 3^n. - Benoit Cloitre, Sep 28 2002
a(n) is asymptotic to d*3^n/sqrt(n) with d around 0.5.. - Benoit Cloitre, Nov 02 2002, d = sqrt(3/Pi)/2 = 0.4886025119... - Alec Mihailovs (alec(AT)mihailovs.com), Feb 24 2005
D-finite with recurrence: a(n) = ((2*n - 1)*a(n-1) + 3*(n - 1)*a(n-2))/n; a(0) = a(1) = 1; see paper by Barcucci, Pinzani and Sprugnoli.
Inverse binomial transform of A000984. - Vladeta Jovovic, Apr 28 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(k, k/2)*(1 + (-1)^k)/2; a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*binomial(2*k, k). - Paul Barry, Jul 01 2003
a(n) = Sum_{k>=0} binomial(n, 2*k)*binomial(2*k, k). - Philippe Deléham, Dec 31 2003
a(n) = Sum_{i+j=n, 0<=j<=i<=n} binomial(n, i)*binomial(i, j). - Benoit Cloitre, Jun 06 2004
a(n) = 3*a(n-1) - 2*A005043(n). - Joost Vermeij (joost_vermeij(AT)hotmail.com), Feb 10 2005
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(k, n-k). - Paul Barry, Apr 23 2005
a(n) = (-1/4)^n*Sum_{k=0..n} binomial(2*k, k)*binomial(2*n-2*k, n-k)*(-3)^k. - Philippe Deléham, Aug 17 2005
a(n) = A111808(n,n). - Reinhard Zumkeller, Aug 17 2005
a(n) = Sum_{k=0..n} (((1 + (-1)^k)/2)*Sum_{i=0..floor((n-k)/2)} binomial(n, i)*binomial(n-i, i+k)*((k + 1)/(i + k + 1))). - Paul Barry, Sep 23 2005
a(n) = 3^n*Sum_{j=0..n} (-1/3)^j*C(n, j)*C(2*j, j); follows from (a) in A027907. - Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006
a(n) = (1/2)^n*Sum_{j=0..n} 3^j*binomial(n, j)*binomial(2*n-2*j, n) = (3/2)^n*Sum_{j=0..n} (1/3)^j*binomial(n, j)*binomial(2*j, n); follows from (c) in A027907. - Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006
a(n) = (1/Pi)*Integral_{x=-1..3} x^n/sqrt((3 - x)*(1 + x)) is moment representation. - Paul Barry, Sep 10 2007
G.f.: 1/(1 - x - 2x^2/(1 - x - x^2/(1 - x - x^2/(1 - ... (continued fraction). - Paul Barry, Aug 05 2009
a(n) = sqrt(-1/3)*(-1)^n*hypergeometric([1/2, n+1], [1], 4/3). - Mark van Hoeij, Nov 12 2009
a(n) = (1/Pi)*Integral_{x=-1..1} (1 + 2*x)^n/sqrt(1 - x^2) = (1/Pi)*Integral_{t=0..Pi} (1 + 2*cos(t))^n. - Eli Wolfhagen, Feb 01 2011
In general, g.f.: 1/sqrt(1 - 2*a*x + x^2*(a^2 - 4*b)) = 1/(1 - a*x)*(1 - 2*x^2*b/(G(0)*(a*x - 1) + 2*x^2*b)); G(k) = 1 - a*x - x^2*b/G(k+1); for g.f.: 1/sqrt(1 - 2*x - 3*x^2) = 1/(1 - x)*(1 - 2*x^2/(G(0)*(x - 1) + 2*x^2)); G(k) = 1 - x - x^2/G(k+1), a = 1, b = 1; (continued fraction). - Sergei N. Gladkovskii, Dec 08 2011
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(2*n-3*k-1, n-3*k)*binomial(n, k). - Gopinath A. R., Feb 10 2012
G.f.: A(x) = x*B'(x)/B(x) where B(x) satisfies B(x) = x*(1 + B(x) + B(x)^2). - Vladimir Kruchinin, Feb 03 2013 (B(x) = x*A001006(x) - Michael Somos, Jul 08 2014)
G.f.: G(0), where G(k) = 1 + x*(2 + 3*x)*(4*k + 1)/(4*k + 2 - x*(2 + 3*x)*(4*k + 2)*(4*k + 3)/(x*(2 + 3*x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
E.g.f.: exp(x) * Sum_{k>=0} (x^k/k!)^2. - Geoffrey Critzer, Sep 04 2013
G.f.: Sum_{n>=0} (2*n)!/n!^2*(x^(2*n)/(1 - x)^(2*n+1)). - Paul D. Hanna, Sep 21 2013
0 = a(n)*(9*a(n+1) + 9*a(n+2) - 6*a(n+3)) + a(n+1)*(3*a(n+1) + 4*a(n+2) - 3*a(n+3)) + a(n+2)*(-a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Jul 08 2014
a(n) = hypergeometric([-n/2, (1-n)/2], [1], 4). - Peter Luschny, Sep 17 2014
a(n) = GegenbauerC(n,-n,-1/2). - Peter Luschny, May 07 2016
a(n) = 4^n*JacobiP[n,-n-1/2,-n-1/2,-1/2]. - Peter Luschny, May 13 2016
From Alexander Burstein, Oct 03 2017: (Start)
G.f.: A(4*x) = B(-x)*B(3*x), where B(x) is the g.f. of A000984.
G.f.: A(2*x)*A(-2*x) = B(x^2)*B(9*x^2).
G.f.: A(x) = 1 + x*M'(x)/M(x), where M(x) is the g.f. of A001006. (End)
a(n) = Sum_{i=0..n/2} n!/((n - 2*i)!*(i!)^2). [Cf. Lalo and Lalo link. It is Luschny's terminating hypergeometric sum.] - Shara Lalo and Zagros Lalo, Oct 03 2018
From Peter Bala, Feb 07 2022: (Start)
a(n)^2 = Sum_{k = 0..n} (-3)^(n-k)*binomial(2*k,k)^2*binomial(n+k,n-k) and has g.f. Sum_{n >= 0} binomial(2*n,n)^2*x^n/(1 + 3*x)^(2*n+1). Compare with the g.f. for a(n) given above by Hanna.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k.
Conjecture: The stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all prime p >= 5 and positive integers n and k. (End)
For even n, a(n) = (n-1)!!* 2^{n/2}/ (n/2)!* 2F1(-n/2,-n/2;1/2;1/4). For odd n, a(n) = n!! *2^(n/2-1/2) / (n/2-1/2)! * 2F1(1/2-n/2,1/2-n/2;3/2;1/4). - R. J. Mathar, Mar 19 2025
Comments