A038507
a(n) = n! + 1.
Original entry on oeis.org
2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3628801, 39916801, 479001601, 6227020801, 87178291201, 1307674368001, 20922789888001, 355687428096001, 6402373705728001, 121645100408832001, 2432902008176640001, 51090942171709440001, 1124000727777607680001, 25852016738884976640001
Offset: 0
G.f. = 2 + 2*x + 3*x^2 + 7*x^3 + 25*x^4 + 121*x^5 + 721*x^6 + 5041*x^7 + ...
- C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 82.
- Wacław Sierpiński, On some unsolved problems of arithmetics, Scripta Mathematica, vol. 25 (1960), p. 125.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 763 and Encyclopedia of Combinatorial Structures 834
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From _N. J. A. Sloane_, Jun 13 2012
- Gerard P. Michon, Wilson's Theorem
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Andrew Walker, Factors of n! +- 1
- Arthur T. White, Ringing the changes, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 2, 203-215.
- Robert G. Wilson v, Explicit factorizations
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 4.
- Index entries for sequences related to factorial numbers
-
a038507 = (+ 1) . a000142
a038507_list = 2 : f 1 2 where
f x y = z : f (x + 1) z where z = x * (y - 1) + 1
-- Reinhard Zumkeller, Mar 20 2013
-
[Factorial(n) +1: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
-
Range[0,20]!+1 (* Harvey P. Dale, May 06 2012 *)
-
A038507(n):= n!+1$
makelist(A038507(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
a(n)=n!+1 \\ Charles R Greathouse IV, Nov 20 2012
-
from math import factorial
def A038507(n): return factorial(n) + 1 # Karl-Heinz Hofmann, Aug 21 2024
-
[factorial(n) + 1 for n in range(0,24)] # Stefano Spezia, Apr 21 2025
A002982
Numbers k such that k! - 1 is prime.
Original entry on oeis.org
3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790, 94550, 103040, 147855, 208003
Offset: 1
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of numbers n! - 1 together with their prime indices begins:
1: {}
5: {3}
23: {9}
119: {4,7}
719: {128}
5039: {675}
40319: {9,273}
362879: {5,5,430}
3628799: {10,11746}
39916799: {6,7,9,992}
479001599: {25306287}
6227020799: {270,256263}
87178291199: {3610490805}
1307674367999: {7,11,11,16,114905}
20922789887999: {436,318519035}
355687428095999: {8,21,10165484947}
6402373705727999: {17,20157,25293727}
121645100408831999: {119,175195,4567455}
2432902008176639999: {11715,659539127675}
(End)
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 166, p. 53, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, Section A2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 719 at p. 160.
- A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26:118 (1972), pp. 567-570.
- J. P. Buhler et al., Primes of the form n!+-1 and 2.3.5....p+-1, Math. Comp., 38:158 (1982), pp. 639-643.
- Chris K. Caldwell, Factorial Primes.
- C. K. Caldwell and Y. Gallot, On the primality of n!+-1 and 2*3*5*...*p+-1, Math. Comp., 71:237 (2002), pp. 441-448.
- P. Carmody, Factorial Prime Search Progress Pages.
- Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- R. K. Guy and N. J. A. Sloane, Correspondence, 1985.
- H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203. (Annotated scanned copy)
- Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, 99 (2015), pp 213-219. doi:10.1017/mag.2015.28.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012.
- R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
- PrimeGrid, World Record Factorial Prime!!!.
- PrimeGrid, Announcement of 94550, (2010). - _Felix Fröhlich_, Jul 11 2014
- PrimeGrid, Announcement of 103040, (2010). - _Felix Fröhlich_, Jul 11 2014
- PrimeGrid, Announcement of 147855, (2013). - _Felix Fröhlich_, Jul 11 2014
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Factorial.
- Eric Weisstein's World of Mathematics, Factorial Prime.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jan. 1989.
- Index entries for sequences related to factorial numbers.
Cf.
A002981 (numbers n such that n!+1 is prime).
21480 sent in by Ken Davis (ken.davis(AT)softwareag.com), Oct 29 2001
Updated Feb 26 2007 by
Max Alekseyev, based on progress reported in the Carmody web site.
Inserted missing 21480 and 34790 (see Caldwell). Added 94550, discovered Oct 05 2010.
Eric W. Weisstein, Oct 06 2010
103040 was discovered by James Winskill, Dec 14 2010. It has 471794 digits. Corrected by
Jens Kruse Andersen, Mar 22 2011
A002109
Hyperfactorials: Product_{k = 1..n} k^k.
Original entry on oeis.org
1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.
- N. J. A. Sloane, Table of n, a(n) for n = 0..36
- Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
- blackpenredpen, What is a Hyperfactorial? Youtube video (2018).
- CreativeMathProblems, A beautiful integral | Raabe's integral, Youtube Video (2021).
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [Broken link]
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
- Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
- Jean-Christophe Pain, Bounds on the p-adic valuation of the factorial, hyperfactorial and superfactorial, arXiv:2408.00353 [math.NT], 2024. See p. 5.
- Vignesh Raman, The Generalized Superfactorial, Hyperfactorial and Primorial functions, arXiv:2012.00882 [math.NT], 2020.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see Section 5.
- László Tóth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
- Eric Weisstein's World of Mathematics, Hyperfactorial.
- Eric Weisstein's World of Mathematics, K-Function.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
Cf.
A000178,
A000142,
A000312,
A001358,
A002981,
A002982,
A100015,
A005234,
A014545,
A018239,
A006794,
A057704,
A057705,
A054374.
Cf.
A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
-
a002109 n = a002109_list !! n
a002109_list = scanl1 (*) a000312_list -- Reinhard Zumkeller, Jul 07 2012
-
f := proc(n) local k; mul(k^k,k=1..n); end;
A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
-
Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
-
a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
-
a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
-
A002109 = [1]
for n in range(1, 10):
A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
-
a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
[a(n) for n in (0..10)] # Peter Luschny, Nov 29 2015
A089085
Numbers k such that (k! + 3)/3 is prime.
Original entry on oeis.org
3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
Offset: 1
Cf. n!/m-1 is a prime:
A002982,
A082671,
A139056,
A139199-
A139205; n!/m+1 is a prime:
A002981,
A082672,
A089085,
A139061,
A139058,
A139063,
A139065,
A151913,
A137390,
A139071 (1<=m<=10).
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
A082672
Numbers n such that (n! + 2)/2 is a prime.
Original entry on oeis.org
2, 4, 5, 7, 8, 13, 16, 30, 43, 49, 91, 119, 213, 1380, 1637, 2258, 4647, 9701, 12258
Offset: 1
Cf. n!/m-1 is a prime:
A002982,
A082671,
A139056,
A139199-
A139205; n!/m+1 is a prime:
A002981,
A082672,
A089085,
A139061,
A139058,
A139063,
A139065,
A151913,
A137390,
A139071 (1<=m<=10).
-
[ n: n in [1..300] | IsPrime((Factorial(n)+2) div 2) ];
-
Select[Range[10^2], PrimeQ[(#!+2)/2] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
-
\\ x such that (x!+2)/2 is prime
xfactpk(n,k=2) = { for(x=2,n, y = (x!+k)/k; if(isprime(y),print1(x, ", ")) ) }
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
A139056
Numbers k for which (k!-3)/3 is prime.
Original entry on oeis.org
4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
Offset: 1
-
a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
-
for(n=1,1000,if(floor(n!/3-1)==n!/3-1,if(ispseudoprime(n!/3-1),print(n)))) \\ Derek Orr, Mar 28 2014
Definition corrected by
Derek Orr, Mar 28 2014
A117141
Primes of the form n!! - 1.
Original entry on oeis.org
2, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1
6!! - 1 = 6*4*2 - 1 = 48 - 1 = 47, which is prime.
8!! - 1 = 8*6*4*2 - 1 = 384 - 1 = 383, which is prime.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.
Cf.
A093173 = primes of the form (2^n * n!) - 1.
-
SFACT:= proc(n) local i,j,k; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: if isprime(i-1) then print(i-1); fi; od: end: SFACT(100);
-
lst={};Do[p=n!!-1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
Select[Table[n!!-1,{n,1,100}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
-
print1(2);for(n=1, 1e3, if(ispseudoprime(t=n!<Charles R Greathouse IV, Jun 16 2011
A137390
Numbers k for which (9 + k!)/9 is prime.
Original entry on oeis.org
8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1
a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
Cf.
A139068 (primes of the form (9 + k!)/9).
-
a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
-
for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
ABC2 $a!/9+1
a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
A139058
Numbers n such that (5+n!)/5 is prime.
Original entry on oeis.org
7, 9, 11, 14, 19, 23, 45, 121, 131, 194, 735, 751, 1316, 1372, 2084, 2562, 5678, 5758, 12533, 24222
Offset: 1
Cf. n!/m-1 is a prime:
A002982,
A082671,
A139056,
A139199-
A139205; n!/m+1 is a prime:
A002981,
A082672,
A089085,
A139061,
A139058,
A139063,
A139065,
A151913,
A137390,
A139071 (1<=m<=10).
-
[ n: n in [5..734] | IsPrime((Factorial(n)+5) div 5) ];
-
a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, n]], {n, 1, 751}]; a
-
A139058(n) = local(k=(n!+5)\5); if(isprime(k), k, 0);
for(n=5, 800, if(A139058(n)>0, print1(n, ", ")))
A139061
Numbers n for which (4+n!)/4 is prime.
Original entry on oeis.org
4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
Offset: 1
Cf.
A082672,
A089085,
A089130,
A117141,
A007749,
A139056,
A139057,
A139058,
A139059,
A139060,
A139061,
A139061,
A139062,
A139063,
A139064,
A139065,
A139066,
A020458,
A139068,
A137390,
A139070,
A139071,
A139072.
Cf. n!/m-1 is a prime:
A002982,
A082671,
A139056,
A139199-
A139205; n!/m+1 is a prime:
A002981,
A082672,
A089085,
A139061,
A139058,
A139063,
A139065,
A151913,
A137390,
A139071 (1<=m<=10).
-
a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
Select[Range[500],PrimeQ[(4+#!)/4]&] (* Harvey P. Dale, Mar 24 2011 *)
-
for(n=4,1e3,if(ispseudoprime(n!/4+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
Showing 1-10 of 111 results.
Comments