cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 111 results. Next

A038507 a(n) = n! + 1.

Original entry on oeis.org

2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3628801, 39916801, 479001601, 6227020801, 87178291201, 1307674368001, 20922789888001, 355687428096001, 6402373705728001, 121645100408832001, 2432902008176640001, 51090942171709440001, 1124000727777607680001, 25852016738884976640001
Offset: 0

Views

Author

Keywords

Comments

"For n = 4, 5 and 7, n!+1 is a square. Sierpiński asked if there are any other values of n with this property." p. 82 of Ogilvy and Anderson (see A146968).
Number of {12,12*,1*2,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
After Wilson's Theorem: if (n+1) is prime then (n+1) is the smallest prime factor of a(n). - Karl-Heinz Hofmann, Aug 21 2024

Examples

			G.f. = 2 + 2*x + 3*x^2 + 7*x^3 + 25*x^4 + 121*x^5 + 721*x^6 + 5041*x^7 + ...
		

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 82.
  • Wacław Sierpiński, On some unsolved problems of arithmetics, Scripta Mathematica, vol. 25 (1960), p. 125.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = n * (a(n-1) - 1) + 1. - Reinhard Zumkeller, Mar 20 2013
0 = a(n)*(a(n+1) - 5*a(n+2) + 5*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) + a(n+2) - 6*a(n+3) + 2*a(n+4)) + a(n+2)*(3*a(n+2) - a(n+3) - a(n+4)) + a(n+3)*(a(n+3)) if n>=0. - Michael Somos, Apr 23 2014
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f: exp(x) + 1/(1 - x).
Sum_{n>=0} 1/a(n) = A217702. (End)

Extensions

Additional comments from Jason Earls, Apr 01 2001
Numericana.com URL fixed by Gerard P. Michon, Mar 30 2010
Entry revised by N. J. A. Sloane, Jun 10 2012

A002982 Numbers k such that k! - 1 is prime.

Original entry on oeis.org

3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790, 94550, 103040, 147855, 208003
Offset: 1

Views

Author

Keywords

Comments

The corresponding primes n!-1 are often called factorial primes.

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of numbers n! - 1 together with their prime indices begins:
                    1: {}
                    5: {3}
                   23: {9}
                  119: {4,7}
                  719: {128}
                 5039: {675}
                40319: {9,273}
               362879: {5,5,430}
              3628799: {10,11746}
             39916799: {6,7,9,992}
            479001599: {25306287}
           6227020799: {270,256263}
          87178291199: {3610490805}
        1307674367999: {7,11,11,16,114905}
       20922789887999: {436,318519035}
      355687428095999: {8,21,10165484947}
     6402373705727999: {17,20157,25293727}
   121645100408831999: {119,175195,4567455}
  2432902008176639999: {11715,659539127675}
(End)
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 166, p. 53, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 719 at p. 160.

Crossrefs

Cf. A002981 (numbers n such that n!+1 is prime).
Cf. A055490 (primes of form n!-1).
Cf. A088332 (primes of form n!+1).

Programs

Extensions

21480 sent in by Ken Davis (ken.davis(AT)softwareag.com), Oct 29 2001
Updated Feb 26 2007 by Max Alekseyev, based on progress reported in the Carmody web site.
Inserted missing 21480 and 34790 (see Caldwell). Added 94550, discovered Oct 05 2010. Eric W. Weisstein, Oct 06 2010
103040 was discovered by James Winskill, Dec 14 2010. It has 471794 digits. Corrected by Jens Kruse Andersen, Mar 22 2011
a(26) = 147855 from Felix Fröhlich, Sep 02 2013
a(27) = 208003 from Sou Fukui, Jul 27 2016

A002109 Hyperfactorials: Product_{k = 1..n} k^k.

Original entry on oeis.org

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 (this sequence) gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego, eq. (6.71.7). - Alan Sokal, Mar 02 2012
a(n) = (-1)^n/det(M_n) where M_n is the n X n matrix m(i,j) = (-1)^i/i^j. - Benoit Cloitre, May 28 2002
a(n) = determinant of the n X n matrix M(n) where m(i,j) = B(n,i,j) and B(n,i,x) denote the Bernstein polynomial: B(n,i,x) = binomial(n,i)*(1-x)^(n-i)*x^i. - Benoit Cloitre, Feb 02 2003
Partial products of A000312. - Reinhard Zumkeller, Jul 07 2012
Number of trailing zeros (A246839) increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms. - Chai Wah Wu, Sep 03 2014
Also the number of minimum distinguishing labelings in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Also shows up in a term in the solution to the generalized version of Raabe's integral. - Jibran Iqbal Shah, Apr 24 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
Cf. A246839 (trailing 0's).
Cf. A261175 (number of digits).

Programs

  • Haskell
    a002109 n = a002109_list !! n
    a002109_list = scanl1 (*) a000312_list  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    f := proc(n) local k; mul(k^k,k=1..n); end;
    A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
    seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
  • Mathematica
    Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
    Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
    Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • Python
    A002109 = [1]
    for n in range(1, 10):
        A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
    
  • Sage
    a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
    [a(n) for n in (0..10)]  # Peter Luschny, Nov 29 2015

Formula

a(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) = A240993(n) / A000142(n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)

A089085 Numbers k such that (k! + 3)/3 is prime.

Original entry on oeis.org

3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
Offset: 1

Views

Author

Cino Hilliard, Dec 05 2003

Keywords

Comments

a(21) > 20000. The PFGW program has been used to certify all the terms up to a(20), using the "N-1" deterministic test. - Giovanni Resta, Mar 31 2014

Crossrefs

Cf. A089131.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

Extensions

More terms from Don Reble, Dec 06 2003
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Typo in Mma program corrected by Vincenzo Librandi, Dec 12 2011
a(16)-a(20) from Giovanni Resta, Mar 31 2014
a(21)-a(23) from Serge Batalov, Feb 17 2015

A082672 Numbers n such that (n! + 2)/2 is a prime.

Original entry on oeis.org

2, 4, 5, 7, 8, 13, 16, 30, 43, 49, 91, 119, 213, 1380, 1637, 2258, 4647, 9701, 12258
Offset: 1

Views

Author

Cino Hilliard, May 18 2003

Keywords

Crossrefs

Cf. A089130.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Magma
    [ n: n in [1..300] | IsPrime((Factorial(n)+2) div 2) ];
  • Mathematica
    Select[Range[10^2], PrimeQ[(#!+2)/2] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
  • PARI
    \\ x such that (x!+2)/2 is prime
    xfactpk(n,k=2) = { for(x=2,n, y = (x!+k)/k; if(isprime(y),print1(x, ", ")) ) }
    

Extensions

More terms from Don Reble, Dec 08 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008

A139056 Numbers k for which (k!-3)/3 is prime.

Original entry on oeis.org

4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015

Crossrefs

Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
  • PARI
    for(n=1,1000,if(floor(n!/3-1)==n!/3-1,if(ispseudoprime(n!/3-1),print(n)))) \\ Derek Orr, Mar 28 2014

Extensions

Definition corrected by Derek Orr, Mar 28 2014
a(8)-a(11) from Derek Orr, Mar 28 2014
a(12) from Giovanni Resta, Mar 28 2014
a(13)-a(14) from Serge Batalov, Feb 24 2015

A117141 Primes of the form n!! - 1.

Original entry on oeis.org

2, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1

Views

Author

Keywords

Examples

			6!! - 1 = 6*4*2 - 1 = 48 - 1 = 47, which is prime.
8!! - 1 = 8*6*4*2 - 1 = 384 - 1 = 383, which is prime.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

Crossrefs

Cf. A093173 = primes of the form (2^n * n!) - 1.

Programs

  • Maple
    SFACT:= proc(n) local i,j,k; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: if isprime(i-1) then print(i-1); fi; od: end: SFACT(100);
  • Mathematica
    lst={};Do[p=n!!-1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
    Select[Table[n!!-1,{n,1,100}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
  • PARI
    print1(2);for(n=1, 1e3, if(ispseudoprime(t=n!<Charles R Greathouse IV, Jun 16 2011

Formula

a(n) = A093173(n-1) for n > 1. - Alexander Adamchuk, Apr 18 2007
a(n) = A006882(A007749(n)) - 1. - Elmo R. Oliveira, Feb 22 2025

A137390 Numbers k for which (9 + k!)/9 is prime.

Original entry on oeis.org

8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1

Views

Author

Artur Jasinski, Apr 09 2008

Keywords

Comments

No other k exists, for k <= 6000. - Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
The next number in the sequence, if one exists, is greater than 10944. - Robert Price, Mar 16 2010
Borrowing from A139074 another term in this sequence is 26737. There may be others between 10944 and 26737. - Robert Price, Dec 13 2011
There are no other terms for k < 26738. - Robert Price, Feb 10 2012

Examples

			a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
		

Crossrefs

Cf. A139068 (primes of the form (9 + k!)/9).
Cf. k!/m - 1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. (m + k!)/m is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A139071.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PFGW
    ABC2 $a!/9+1
    a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
a(10) corrected from 1053 to 1056 by Dmitry Kamenetsky, Jul 12 2008
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
a(12)-a(13) from Robert Price, Feb 10 2012

A139058 Numbers n such that (5+n!)/5 is prime.

Original entry on oeis.org

7, 9, 11, 14, 19, 23, 45, 121, 131, 194, 735, 751, 1316, 1372, 2084, 2562, 5678, 5758, 12533, 24222
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (5+n!)/5 see A139059.
a(21) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Cf. A139059.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Magma
    [ n: n in [5..734] | IsPrime((Factorial(n)+5) div 5) ];
    
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, n]], {n, 1, 751}]; a
  • PARI
    A139058(n) = local(k=(n!+5)\5); if(isprime(k), k, 0);
    for(n=5, 800, if(A139058(n)>0, print1(n, ", ")))

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19)-a(20) from Robert Price, Nov 20 2016

A139061 Numbers n for which (4+n!)/4 is prime.

Original entry on oeis.org

4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (4+k!)/4, see A139060.
a(22) > 25000. - Robert Price, Jan 10 2017

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(4+#!)/4]&]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=4,1e3,if(ispseudoprime(n!/4+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19) - a(21) from Robert Price, Jan 10 2017
Showing 1-10 of 111 results. Next