cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 86 results. Next

A006880 Number of primes < 10^n.

Original entry on oeis.org

0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511, 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290
Offset: 0

Views

Author

Keywords

Comments

Number of primes with at most n digits; or pi(10^n).
Partial sums of A006879. - Lekraj Beedassy, Jun 25 2004
Also omega( (10^n)! ), where omega(x): number of distinct prime divisors of x. - Cino Hilliard, Jul 04 2007
This sequence also gives a good approximation for the sum of primes less than 10^(n/2). This is evident from the fact that the number of primes less than 10^2n closely approximates the sum of primes less than 10^n. See link on Sum of Primes for the derivation. - Cino Hilliard, Jun 08 2008
It appears that (10^n)/log((n+3)!) is a lower bound close to a(n), see A025201. - Eric Desbiaux, Jul 20 2010, edited by M. F. Hasler, Dec 03 2018

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 143, 146.
  • Richard Crandall and Carl B. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; p. 11.
  • Keith Devlin, Mathematics: The New Golden Age, new and revised edition. New York: Columbia University Press (1993): p. 6, Table 1.
  • Marcus du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; p. 48.
  • Calvin T. Long, Elementary Introduction to Number Theory. Prentice-Hall, Englewood Cliffs, NJ, 1987, p. 77.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 179.
  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, page 38.
  • D. Shanks, Solved and Unsolved Problems in Number Theory. Chelsea, NY, 2nd edition, 1978, p. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 455052511 at p. 190.

Crossrefs

Programs

Formula

a(n) = A000720(10^n). - M. F. Hasler, Dec 03 2018
Limit_{n->oo} a(n)/a(n-1) = 10. - Stefano Spezia, Aug 31 2025

Extensions

Lehmer gave the incorrect value 455052512 for the 10th term. More terms May 1996. Jud McCranie points out that the 11th term is not 4188054813 but rather 4118054813.
a(22) from Robert G. Wilson v, Sep 04 2001
a(23) (see Gourdon and Sebah) has yet to be verified and the assumed error is +-1. - Robert G. Wilson v, Jul 10 2002 [The actual error was 14037804. - N. J. A. Sloane, Nov 28 2007]
a(23) corrected by N. J. A. Sloane from the web page of Tomás Oliveira e Silva, Nov 28 2007
a(25) from J. Buethe, J. Franke, A. Jost, T. Kleinjung, Jun 01 2013, who said: "We have calculated pi(10^25) = 176846309399143769411680 unconditionally, using an analytic method based on Weil's explicit formula".
a(26) from Douglas B. Staple, Dec 02 2014
a(27) in the b-file from David Baugh and Kim Walisch via Charles R Greathouse IV, Jun 01 2016
a(28) in the b-file from David Baugh and Kim Walisch, Oct 26 2020
a(29) in the b-file from David Baugh and Kim Walisch, Feb 28 2022

A002981 Numbers k such that k! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465, 308084, 422429
Offset: 1

Views

Author

Keywords

Comments

If n + 1 is prime then (by Wilson's theorem) n + 1 divides n! + 1. Thus for n > 2 if n + 1 is prime n is not in the sequence. - Farideh Firoozbakht, Aug 22 2003
For n > 2, n! + 1 is prime <==> nextprime((n+1)!) > (n+1)nextprime(n!) and we can conjecture that for n > 2 if n! + 1 is prime then (n+1)! + 1 is not prime. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 03 2004
The prime members are in A093804 (numbers n such that Sum_{d|n} d! is prime) since Sum_{d|n} d! = n! + 1 if n is prime. - Jonathan Sondow
150209 is also in the sequence, cf. the link to Caldwell's prime pages. - M. F. Hasler, Nov 04 2011

Examples

			3! + 1 = 7 is prime, so 3 is in the sequence.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 116, p. 40, Ellipses, Paris 2008.
  • Harvey Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203.
  • Richard K. Guy, Unsolved Problems in Number Theory, Section A2.
  • F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 100.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 70.

Crossrefs

Cf. A002982 (n!-1 is prime), A064295. A088332 gives the primes.
Equals A090660 - 1.
Cf. A093804.

Programs

  • Magma
    [n: n in [0..800] | IsPrime(Factorial(n)+1)]; // Vincenzo Librandi, Oct 31 2018
    
  • Mathematica
    v = {0, 1, 2}; Do[If[ !PrimeQ[n + 1] && PrimeQ[n! + 1], v = Append[v, n]; Print[v]], {n, 3, 29651}]
    Select[Range[100], PrimeQ[#! + 1] &] (* Alonso del Arte, Jul 24 2014 *)
  • PARI
    for(n=0,500,if(ispseudoprime(n!+1),print1(n", "))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from sympy import factorial, isprime
    for n in range(0,800):
        if isprime(factorial(n)+1):
            print(n, end=', ') # Stefano Spezia, Jan 10 2019

Extensions

a(19) sent in by Jud McCranie, May 08 2000
a(20) from Ken Davis (kraden(AT)ozemail.com.au), May 24 2002
a(21) found by PrimeGrid around Jun 11 2011, submitted by Eric W. Weisstein, Jun 13 2011
a(22) from Rene Dohmen, Jun 09 2012
a(23) from Rene Dohmen, Jan 12 2022
a(24)-a(25) from Dmitry Kamenetsky, Jun 19 2024

A033312 a(n) = n! - 1.

Original entry on oeis.org

0, 0, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 39916799, 479001599, 6227020799, 87178291199, 1307674367999, 20922789887999, 355687428095999, 6402373705727999, 121645100408831999, 2432902008176639999, 51090942171709439999, 1124000727777607679999
Offset: 0

Views

Author

N. J. A. Sloane. This sequence appeared in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Eric W. Weisstein. Entry revised by N. J. A. Sloane, Jun 12 2012

Keywords

Comments

a(n) gives the index number in any table of permutations of the entry in which the last n + 1 items are reversed. - Eugene McDonnell (eemcd(AT)mac.com), Dec 03 2004
a(n), n >= 1, has the factorial representation [n - 1, n - 2, ..., 1, 0]. The (unique) factorial representation of a number m from {0, 1, ... n! - 1} is m = sum(m_j(n)*j!, j = 0 .. n - 1) with m_j(n) from {0, 1, .., j}, n>=1. This is encoded as [m_{n-1},m_{n-2},...,m+1,m_0] with m_0=0. This can be interpreted as (D. N.) Lehmer code for the lexicographic rank of permutations of the symmetric group S_n (see the W. Lang link under A136663). The Lehmer code [n - 1, n - 2, ..., 1, 0] stands for the permutation [n, n - 1, ..., 1] (the last in lexicographic order). - Wolfdieter Lang, May 21 2008
For n >= 3: a(n) = numbers m for which there is one iteration {floor (r / k)} for k = n, n - 1, n - 2, ... 2 with property r mod k = k - 1 starting at r = m. For n = 5: a(5) = 119; floor (119 / 5) = 23, 119 mod 5 = 4; floor (23 / 4) = 5, 23 mod 4 = 3; floor (5 / 3) = 1, 5 mod 3 = 2; floor (1 / 2) = 0; 1 mod 2 = 1. - Jaroslav Krizek, Jan 23 2010
For n = 4, define the sum of all possible products of 1, 2, 3, 4 to be 1 + 2 + 3 + 4 add 1*2 + 1*3 + 1*4 add 2*3 + 2*4 + 3*4 add 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 add 1*2*3*4. The sum of this is 119 = (4 + 1)! - 1. For n = 5 I get the sum 719 = (5 + 1)! - 1. The proof for the general case seems to follow by induction. - J. M. Bergot, Jan 10 2011

Examples

			G.f. = x^2 + 5*x^3 + 23*x^4 + 119*x^5 + 719*x^6 + 5039*x^7 + 40319*x^8 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 181, p. 92.
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 6, 1969, p. 3, 1993.
  • Problem 598, J. Rec. Math., 11 (1978), 68-69.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A000142, A001563 (first differences), A002582, A002982, A038507 (factorizations), A054415, A056110, A331373.
Row sums of A008291.

Programs

Formula

a(n) = Sum_{k = 1 .. n} (k-1)*(k-1)!.
a(n) = a(n - 1)*(n - 1) + a(n - 1) + n - 1, a(0) = 0. - Reinhard Zumkeller, Feb 03 2003
a(0) = a(1) = 0, a(n) = a(n - 1) * n + (n - 1) for n >= 2. - Jaroslav Krizek, Jan 23 2010
E.g.f.: 1/(1 - x) - exp(x). - Sergei N. Gladkovskii, Jun 29 2012
0 = 1 + a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(+3 + a(n+1)) + a(n+2)*(-1) for n>=0. - Michael Somos, Feb 24 2017
Sum_{n>=2} 1/a(n) = A331373. - Amiram Eldar, Nov 11 2020

A002109 Hyperfactorials: Product_{k = 1..n} k^k.

Original entry on oeis.org

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 (this sequence) gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego, eq. (6.71.7). - Alan Sokal, Mar 02 2012
a(n) = (-1)^n/det(M_n) where M_n is the n X n matrix m(i,j) = (-1)^i/i^j. - Benoit Cloitre, May 28 2002
a(n) = determinant of the n X n matrix M(n) where m(i,j) = B(n,i,j) and B(n,i,x) denote the Bernstein polynomial: B(n,i,x) = binomial(n,i)*(1-x)^(n-i)*x^i. - Benoit Cloitre, Feb 02 2003
Partial products of A000312. - Reinhard Zumkeller, Jul 07 2012
Number of trailing zeros (A246839) increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms. - Chai Wah Wu, Sep 03 2014
Also the number of minimum distinguishing labelings in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Also shows up in a term in the solution to the generalized version of Raabe's integral. - Jibran Iqbal Shah, Apr 24 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
Cf. A246839 (trailing 0's).
Cf. A261175 (number of digits).

Programs

  • Haskell
    a002109 n = a002109_list !! n
    a002109_list = scanl1 (*) a000312_list  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    f := proc(n) local k; mul(k^k,k=1..n); end;
    A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
    seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
  • Mathematica
    Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
    Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
    Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • Python
    A002109 = [1]
    for n in range(1, 10):
        A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
    
  • Sage
    a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
    [a(n) for n in (0..10)]  # Peter Luschny, Nov 29 2015

Formula

a(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) = A240993(n) / A000142(n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)

A089085 Numbers k such that (k! + 3)/3 is prime.

Original entry on oeis.org

3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
Offset: 1

Views

Author

Cino Hilliard, Dec 05 2003

Keywords

Comments

a(21) > 20000. The PFGW program has been used to certify all the terms up to a(20), using the "N-1" deterministic test. - Giovanni Resta, Mar 31 2014

Crossrefs

Cf. A089131.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

Extensions

More terms from Don Reble, Dec 06 2003
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Typo in Mma program corrected by Vincenzo Librandi, Dec 12 2011
a(16)-a(20) from Giovanni Resta, Mar 31 2014
a(21)-a(23) from Serge Batalov, Feb 17 2015

A082672 Numbers n such that (n! + 2)/2 is a prime.

Original entry on oeis.org

2, 4, 5, 7, 8, 13, 16, 30, 43, 49, 91, 119, 213, 1380, 1637, 2258, 4647, 9701, 12258
Offset: 1

Views

Author

Cino Hilliard, May 18 2003

Keywords

Crossrefs

Cf. A089130.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Magma
    [ n: n in [1..300] | IsPrime((Factorial(n)+2) div 2) ];
  • Mathematica
    Select[Range[10^2], PrimeQ[(#!+2)/2] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
  • PARI
    \\ x such that (x!+2)/2 is prime
    xfactpk(n,k=2) = { for(x=2,n, y = (x!+k)/k; if(isprime(y),print1(x, ", ")) ) }
    

Extensions

More terms from Don Reble, Dec 08 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008

A139056 Numbers k for which (k!-3)/3 is prime.

Original entry on oeis.org

4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015

Crossrefs

Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
  • PARI
    for(n=1,1000,if(floor(n!/3-1)==n!/3-1,if(ispseudoprime(n!/3-1),print(n)))) \\ Derek Orr, Mar 28 2014

Extensions

Definition corrected by Derek Orr, Mar 28 2014
a(8)-a(11) from Derek Orr, Mar 28 2014
a(12) from Giovanni Resta, Mar 28 2014
a(13)-a(14) from Serge Batalov, Feb 24 2015

A117141 Primes of the form n!! - 1.

Original entry on oeis.org

2, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1

Views

Author

Keywords

Examples

			6!! - 1 = 6*4*2 - 1 = 48 - 1 = 47, which is prime.
8!! - 1 = 8*6*4*2 - 1 = 384 - 1 = 383, which is prime.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

Crossrefs

Cf. A093173 = primes of the form (2^n * n!) - 1.

Programs

  • Maple
    SFACT:= proc(n) local i,j,k; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: if isprime(i-1) then print(i-1); fi; od: end: SFACT(100);
  • Mathematica
    lst={};Do[p=n!!-1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
    Select[Table[n!!-1,{n,1,100}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
  • PARI
    print1(2);for(n=1, 1e3, if(ispseudoprime(t=n!<Charles R Greathouse IV, Jun 16 2011

Formula

a(n) = A093173(n-1) for n > 1. - Alexander Adamchuk, Apr 18 2007
a(n) = A006882(A007749(n)) - 1. - Elmo R. Oliveira, Feb 22 2025

A137390 Numbers k for which (9 + k!)/9 is prime.

Original entry on oeis.org

8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1

Views

Author

Artur Jasinski, Apr 09 2008

Keywords

Comments

No other k exists, for k <= 6000. - Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
The next number in the sequence, if one exists, is greater than 10944. - Robert Price, Mar 16 2010
Borrowing from A139074 another term in this sequence is 26737. There may be others between 10944 and 26737. - Robert Price, Dec 13 2011
There are no other terms for k < 26738. - Robert Price, Feb 10 2012

Examples

			a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
		

Crossrefs

Cf. A139068 (primes of the form (9 + k!)/9).
Cf. k!/m - 1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. (m + k!)/m is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A139071.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PFGW
    ABC2 $a!/9+1
    a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
a(10) corrected from 1053 to 1056 by Dmitry Kamenetsky, Jul 12 2008
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
a(12)-a(13) from Robert Price, Feb 10 2012

A006988 a(n) = (10^n)-th prime.

Original entry on oeis.org

2, 29, 541, 7919, 104729, 1299709, 15485863, 179424673, 2038074743, 22801763489, 252097800623, 2760727302517, 29996224275833, 323780508946331, 3475385758524527, 37124508045065437, 394906913903735329, 4185296581467695669, 44211790234832169331
Offset: 0

Views

Author

Keywords

Comments

Check the b-file for terms beyond those listed above.

Examples

			a(0) = 10^0-th prime = first prime = 2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 111.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A099260, A274767 ((leading) digits of 103-digit a(100)).

Programs

Extensions

More terms from Paul Zimmermann
a(19) from Marc Deleglise, Jun 29 2008
a(20) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 05 2011
a(21) from Henri Lifchitz, Sep 09 2014
a(22) from Henri Lifchitz, Nov 21 2014
Showing 1-10 of 86 results. Next