A006880
Number of primes < 10^n.
Original entry on oeis.org
0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511, 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 143, 146.
- Richard Crandall and Carl B. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; p. 11.
- Keith Devlin, Mathematics: The New Golden Age, new and revised edition. New York: Columbia University Press (1993): p. 6, Table 1.
- Marcus du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; p. 48.
- Calvin T. Long, Elementary Introduction to Number Theory. Prentice-Hall, Englewood Cliffs, NJ, 1987, p. 77.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 179.
- H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, page 38.
- D. Shanks, Solved and Unsolved Problems in Number Theory. Chelsea, NY, 2nd edition, 1978, p. 15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 455052511 at p. 190.
- David Baugh, Table of n, a(n) for n = 0..29 (terms n = 1..27 from Charles R Greathouse IV).
- Chris K. Caldwell, How Many Primes Are There?
- Chris K. Caldwell, Mark Deleglise's work
- Muhammed Hüsrev Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265 [math.NT], 2014.
- Muhammed Hüsrev Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.
- Jens Franke, Thorsten Kleinjung, Jan Büthe, and Alexander Jost, A practical analytic method for calculating pi(x), Math. Comp. 86 (2017), 2889-2909.
- Xavier Gourdon, a(22) found by pi(x) project
- Xavier Gourdon and Pascal Sebah, The pi(x) project : results and current computations
- Andrew Granville and Greg Martin, Prime number races, Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.
- Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Cino Hilliard, Sum of primes [unusable link]
- Ronald K. Hoeflin, Titan Test
- D. S. Kluk and N. J. A. Sloane, Correspondence, 1979, [see p. 6 of the pdf].
- Rishi Kumar, Kepler Sets of Second-Order Linear Recurrence Sequences Over Q_p, arXiv:2406.05890 [math.NT], 2024. See p. 7.
- J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing pi(x): The Meissel-Lehmer method, Math. Comp., 44 (1985), pp. 537-560.
- J. C. Lagarias and Andrew M. Odlyzko, Computing pi(x): An analytic method, J. Algorithms, 8 (1987), pp. 173-191.
- Pieter Moree, Izabela Petrykiewicz, and Alisa Sedunova, A computational history of prime numbers and Riemann zeros, arXiv:1810.05244 [math.NT], 2018. See Table 1 p. 6.
- Tomás Oliveira e Silva, Tables of values of pi(x) and of pi2(x)
- Tomás Oliveira e Silva, Computing pi(x): the combinatorial method, Revista do Detua, Vol. 4, N 6, March 2006.
- David J. Platt, Computing pi(x) analytically, arXiv:1203.5712 [math.NT], 2012-2013.
- Vladimir Pletser, Conjecture on the value of Pi(10^26), the number of primes less than 10^26, arXiv:1307.4444 [math.NT], 2013.
- Vladimir Pletser, Global Generalized Mersenne Numbers: Definition, Decomposition, and Generalized Theorems, Preprints.org, 2024. See p. 20.
- Douglas B. Staple, The combinatorial algorithm for computing pi(x), arXiv:1503.01839 [math.NT], 2015.
- M. R. Watkins, The distribution of prime numbers
- Eric Weisstein's World of Mathematics, Prime Counting Function
- Wikipedia, Prime number theorem
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jan. 1989
- Index entries for sequences related to numbers of primes in various ranges
Lehmer gave the incorrect value 455052512 for the 10th term. More terms May 1996.
Jud McCranie points out that the 11th term is not 4188054813 but rather 4118054813.
a(23) (see Gourdon and Sebah) has yet to be verified and the assumed error is +-1. -
Robert G. Wilson v, Jul 10 2002 [The actual error was 14037804. -
N. J. A. Sloane, Nov 28 2007]
a(23) corrected by
N. J. A. Sloane from the web page of Tomás Oliveira e Silva, Nov 28 2007
a(25) from J. Buethe, J. Franke, A. Jost, T. Kleinjung, Jun 01 2013, who said: "We have calculated pi(10^25) = 176846309399143769411680 unconditionally, using an analytic method based on Weil's explicit formula".
a(28) in the b-file from
David Baugh and Kim Walisch, Oct 26 2020
a(29) in the b-file from
David Baugh and Kim Walisch, Feb 28 2022
A002981
Numbers k such that k! + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465, 308084, 422429
Offset: 1
3! + 1 = 7 is prime, so 3 is in the sequence.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 116, p. 40, Ellipses, Paris 2008.
- Harvey Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203.
- Richard K. Guy, Unsolved Problems in Number Theory, Section A2.
- F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 100.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 70.
- A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26 (1972), 567-570.
- Chris K. Caldwell, Factorial Primes.
- Chris K. Caldwell, 110059! + 1 on the Prime Pages.
- Chris K. Caldwell, 150209! + 1 on the Prime Pages (Oct 31, 2011).
- Chris K. Caldwell, 288465! + 1 on the Prime Pages (Jan 12, 2022).
- Chris K. Caldwell and Y. Gallot, On the primality of n!+-1 and 2*3*5*...*p+-1, Math. Comp., 71 (2001), 441-448.
- Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
- H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203. (Annotated scanned copy)
- H. Dubner and N. J. A. Sloane, Correspondence, 1991.
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- R. K. Guy and N. J. A. Sloane, Correspondence, 1985.
- N. Kuosa, Source for 6380.
- Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, 99, pp 213-219 (2015).
- Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From N. J. A. Sloane, Jun 13 2012
- Hisanori Mishima, Factors of N!+1.
- Rudolf Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
- Titus Piezas III, 2004. Solving Solvable Sextics Using Polynomial Decomposition.
- PrimePages, Factorial Primes.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Apoloniusz Tyszka, A conjecture which implies that there are infinitely many primes of the form n!+1, Preprint, 2017.
- Apoloniusz Tyszka, A common approach to the problem of the infinitude of twin primes, primes of the form n! + 1, and primes of the form n! - 1, 2018.
- Apoloniusz Tyszka, On sets X subset of N for which we know an algorithm that computes a threshold number t(X) in N such that X is infinite if and only if X contains an element greater than t(X), 2019.
- Apoloniusz Tyszka, On sets X, subset of N, whose finiteness implies that we know an algorithm which for every n, element of N, decides the inequality max (X) < n, (2019).
- Eric Weisstein's World of Mathematics, Factorial Prime.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- Index entries for sequences related to factorial numbers.
-
[n: n in [0..800] | IsPrime(Factorial(n)+1)]; // Vincenzo Librandi, Oct 31 2018
-
v = {0, 1, 2}; Do[If[ !PrimeQ[n + 1] && PrimeQ[n! + 1], v = Append[v, n]; Print[v]], {n, 3, 29651}]
Select[Range[100], PrimeQ[#! + 1] &] (* Alonso del Arte, Jul 24 2014 *)
-
for(n=0,500,if(ispseudoprime(n!+1),print1(n", "))) \\ Charles R Greathouse IV, Jun 16 2011
-
from sympy import factorial, isprime
for n in range(0,800):
if isprime(factorial(n)+1):
print(n, end=', ') # Stefano Spezia, Jan 10 2019
a(20) from Ken Davis (kraden(AT)ozemail.com.au), May 24 2002
a(21) found by PrimeGrid around Jun 11 2011, submitted by
Eric W. Weisstein, Jun 13 2011
A033312
a(n) = n! - 1.
Original entry on oeis.org
0, 0, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 39916799, 479001599, 6227020799, 87178291199, 1307674367999, 20922789887999, 355687428095999, 6402373705727999, 121645100408831999, 2432902008176639999, 51090942171709439999, 1124000727777607679999
Offset: 0
G.f. = x^2 + 5*x^3 + 23*x^4 + 119*x^5 + 719*x^6 + 5039*x^7 + 40319*x^8 + ...
- Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 181, p. 92.
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 6, 1969, p. 3, 1993.
- Problem 598, J. Rec. Math., 11 (1978), 68-69.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- The IMO Compendium, Problem 6, 1st Canadian Mathematical Olympiad 1969.
- Stéphane Legendre and Philippe Paclet, On the Permutations Generated by Cyclic Shift , J. Int. Seq. 14 (2011) # 11.3.2.
- Gerard P. Michon, Wilson's Theorem.
- Hisanori Mishima, Factorizations of many number sequences.
- Hisanori Mishima, Factorizations of many number sequences.
- Michael Penn, Make it look like a simple calculus problem., YouTube video, 2021.
- Andrew Walker, Factors of n! +- 1.
- Eric Weisstein's World of Mathematics, Factorial.
- Eric Weisstein's World of Mathematics, Permutation Pattern.
- Index entries for sequences related to factorial base representation.
- Index entries for sequences related to factorial numbers.
- Index to sequences related to Olympiads.
-
[Factorial(n)-1: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
-
FoldList[#1*#2 + #2 - 1 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
Range[0, 19]! - 1 (* Alonso del Arte, Jan 24 2013 *)
-
A033312(n):= n!-1$
makelist(A033312(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
a(n)=n!-1 \\ Charles R Greathouse IV, Jul 19 2011
A002109
Hyperfactorials: Product_{k = 1..n} k^k.
Original entry on oeis.org
1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.
- N. J. A. Sloane, Table of n, a(n) for n = 0..36
- Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
- blackpenredpen, What is a Hyperfactorial? Youtube video (2018).
- CreativeMathProblems, A beautiful integral | Raabe's integral, Youtube Video (2021).
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [Broken link]
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
- Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
- Jean-Christophe Pain, Bounds on the p-adic valuation of the factorial, hyperfactorial and superfactorial, arXiv:2408.00353 [math.NT], 2024. See p. 5.
- Vignesh Raman, The Generalized Superfactorial, Hyperfactorial and Primorial functions, arXiv:2012.00882 [math.NT], 2020.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see Section 5.
- László Tóth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
- Eric Weisstein's World of Mathematics, Hyperfactorial.
- Eric Weisstein's World of Mathematics, K-Function.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
Cf.
A000178,
A000142,
A000312,
A001358,
A002981,
A002982,
A100015,
A005234,
A014545,
A018239,
A006794,
A057704,
A057705,
A054374.
Cf.
A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
-
a002109 n = a002109_list !! n
a002109_list = scanl1 (*) a000312_list -- Reinhard Zumkeller, Jul 07 2012
-
f := proc(n) local k; mul(k^k,k=1..n); end;
A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
-
Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
-
a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
-
a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
-
A002109 = [1]
for n in range(1, 10):
A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
-
a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
[a(n) for n in (0..10)] # Peter Luschny, Nov 29 2015
A089085
Numbers k such that (k! + 3)/3 is prime.
Original entry on oeis.org
3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
Offset: 1
Cf. n!/m-1 is a prime:
A002982,
A082671,
A139056,
A139199-
A139205; n!/m+1 is a prime:
A002981,
A082672,
A089085,
A139061,
A139058,
A139063,
A139065,
A151913,
A137390,
A139071 (1<=m<=10).
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
A082672
Numbers n such that (n! + 2)/2 is a prime.
Original entry on oeis.org
2, 4, 5, 7, 8, 13, 16, 30, 43, 49, 91, 119, 213, 1380, 1637, 2258, 4647, 9701, 12258
Offset: 1
Cf. n!/m-1 is a prime:
A002982,
A082671,
A139056,
A139199-
A139205; n!/m+1 is a prime:
A002981,
A082672,
A089085,
A139061,
A139058,
A139063,
A139065,
A151913,
A137390,
A139071 (1<=m<=10).
-
[ n: n in [1..300] | IsPrime((Factorial(n)+2) div 2) ];
-
Select[Range[10^2], PrimeQ[(#!+2)/2] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
-
\\ x such that (x!+2)/2 is prime
xfactpk(n,k=2) = { for(x=2,n, y = (x!+k)/k; if(isprime(y),print1(x, ", ")) ) }
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
A139056
Numbers k for which (k!-3)/3 is prime.
Original entry on oeis.org
4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
Offset: 1
-
a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
-
for(n=1,1000,if(floor(n!/3-1)==n!/3-1,if(ispseudoprime(n!/3-1),print(n)))) \\ Derek Orr, Mar 28 2014
Definition corrected by
Derek Orr, Mar 28 2014
A117141
Primes of the form n!! - 1.
Original entry on oeis.org
2, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1
6!! - 1 = 6*4*2 - 1 = 48 - 1 = 47, which is prime.
8!! - 1 = 8*6*4*2 - 1 = 384 - 1 = 383, which is prime.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.
Cf.
A093173 = primes of the form (2^n * n!) - 1.
-
SFACT:= proc(n) local i,j,k; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: if isprime(i-1) then print(i-1); fi; od: end: SFACT(100);
-
lst={};Do[p=n!!-1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
Select[Table[n!!-1,{n,1,100}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
-
print1(2);for(n=1, 1e3, if(ispseudoprime(t=n!<Charles R Greathouse IV, Jun 16 2011
A137390
Numbers k for which (9 + k!)/9 is prime.
Original entry on oeis.org
8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1
a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
Cf.
A139068 (primes of the form (9 + k!)/9).
-
a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
-
for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
ABC2 $a!/9+1
a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
A006988
a(n) = (10^n)-th prime.
Original entry on oeis.org
2, 29, 541, 7919, 104729, 1299709, 15485863, 179424673, 2038074743, 22801763489, 252097800623, 2760727302517, 29996224275833, 323780508946331, 3475385758524527, 37124508045065437, 394906913903735329, 4185296581467695669, 44211790234832169331
Offset: 0
a(0) = 10^0-th prime = first prime = 2.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 111.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Marc Deleglise et al., Table of n, a(n) for n = 0..24 (a(23) corrected and a(24) added using Kim Walisch's primecount program, by David Baugh, Nov 11 2015)
- C. K. Caldwell, Marc Deleglise's work on new values of pi(x)
- UTM, The Nth Prime Page.
- Eric Weisstein's World of Mathematics, Prime Number
- R. G. Wilson, V, Letter to N. J. A. Sloane, Jan. 1989
Showing 1-10 of 86 results.
Comments