A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.
1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0
Examples
LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2. floor(log(6)/log(3)) = 1 so the exponent of 3 is 1. floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
References
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2308 (first 501 terms from T. D. Noe)
- R. Anderson and N. J. A. Sloane, Correspondence, 1975.
- Dorin Andrica, Sorin Rădulescu, and George Cătălin Ţurcaş, The Exponent of a Group: Properties, Computations and Applications, Disc. Math. and Applications, Springer, Cham (2020), 57-108.
- Javier Cilleruelo, Juanjo Rué, Paulius Šarka, and Ana Zumalacárregui, The least common multiple of sets of positive integers, arXiv:1112.3013 [math.NT], 2011.
- R. E. Crandall and C. Pomerance, Prime numbers: a computational perspective, MR2156291, p. 61.
- Roger B. Eggleton, Least Common Multiple of {1,2,...,n}, Mathematics Magazine, 61(1) (1988), pp. 47-48, Problem 1252.
- Bakir Farhi, An identity involving the least common multiple of binomial coefficients and its application, arXiv:0906.2295 [math.NT], 2009.
- Bakir Farhi, An identity involving the least common multiple of binomial coefficients and its application, Amer. Math. Monthly 116(9) (2009), 836-839.
- Steven Finch, Cilleruelo's LCM Constants, 2013. [Cached copy, with permission of the author]
- V. L. Gavrikov, On property of least common multiple to be a D-magic number, arXiv:1806.09264 [math.NT], 2018.
- S. Labbé and E. Pelantová, Palindromic sequences generated from marked morphisms, arXiv:1409.7510 [math.CO], 2014.
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (6) (2002) 534-543. arXiv:math/0008177 [math.NT], 2000-2001.
- Peter Luschny and S. Wehmeier, The lcm(1, 2, ..., n) as a product of sine values sampled over the points in Farey sequences, arXiv:0909.1838 [math.CA], 2009.
- Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, 99, pp 213-219 (2015).
- Greg Martin, A product of Gamma function values at fractions with the same denominator, arXiv:0907.4384 [math.CA], 2009.
- M. Nair, On Chebychev-type inequalities for primes Amer. Math. Monthly 89(2) (1982), 126-129.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society ser. 2, vol. XIV, no. 1 (1915), pp 347-409. (A variant of a better quality with an additional footnote is available here.)
- E. S. Selmer, On the number of prime divisors of a binomial coefficient, Math. Scand. 39 (1976), no. 2, 271-281 (1977).
- Jonathan Sondow, Criteria for irrationality of Euler's constant, Proc. AMS 131 (2003), 3335.
- Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
- M. Tchebichef, Mémoire sur les nombres premiers, J. Math. Pures Appliquées 17 (1852), 366-390.
- Helge von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1) (1901), 159-182.
- Eric Weisstein's World of Mathematics, Least Common Multiple, Chebyshev Functions, Mangoldt Function.
- Index to divisibility sequences
- Index entries for "core" sequences
- Index entries for sequences related to lcm's
Crossrefs
Row products of A133233.
Cf. A000142, A000793, A002110, A002182, A002201, A002944, A014963, A020500, A025527, A038610, A051173, A064446, A064859, A069513, A072938, A093880, A094348, A096179, A099996, A102910, A106037, A119682, A179661, A193181, A225558, A225630, A225632, A225640, A225642.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Programs
-
Haskell
a003418 = foldl lcm 1 . enumFromTo 2 -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
-
Magma
[1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
-
Magma
[Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
-
Maple
A003418 := n-> lcm(seq(i,i=1..n)); HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny # next Maple program: a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end: seq(a(n), n=0..33); # Alois P. Heinz, Jun 10 2021
-
Mathematica
Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *) FoldList[ LCM, 1, Range@ 28] A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *) Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *) Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *) a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify a[n_] := Denominator[Sqrt[a1[n]]]; Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
-
PARI
a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
-
PARI
a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
-
PARI
a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
-
PARI
a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
-
PARI
n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
-
Python
from functools import reduce from operator import mul from sympy import sieve def integerlog(n,b): # find largest integer k>=0 such that b^k <= n kmin, kmax = 0,1 while b**kmax <= n: kmax *= 2 while True: kmid = (kmax+kmin)//2 if b**kmid > n: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmin def A003418(n): return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
-
Python
# generates initial segment of sequence from math import gcd from itertools import accumulate def lcm(a, b): return a * b // gcd(a, b) def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm)) print(aupton(30)) # Michael S. Branicky, Jun 10 2021
-
Sage
[lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
-
Scheme
(define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
Formula
The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020
Comments