A008794
Squares repeated; a(n) = floor(n/2)^2.
Original entry on oeis.org
0, 0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25, 36, 36, 49, 49, 64, 64, 81, 81, 100, 100, 121, 121, 144, 144, 169, 169, 196, 196, 225, 225, 256, 256, 289, 289, 324, 324, 361, 361, 400, 400, 441, 441, 484, 484, 529, 529, 576, 576
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Stefano Spezia, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Clique Covering Number.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Kings Problem.
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
-
Flat(List([0..24],n->[n^2,n^2])); # Muniru A Asiru, Oct 09 2018
-
[(2*n-1)*(-1)^n/8+(2*n^2-2*n +1)/8: n in [0..60]]; // Vincenzo Librandi, Aug 21 2011
-
A008794:=n->floor(n/2)^2: seq(A008794(n), n=0..50); # Wesley Ivan Hurt, Dec 08 2017
-
With[{sq = Range[0, 30]^2}, Riffle[sq, sq]] (* Harvey P. Dale, Nov 20 2015 *)
Table[Floor[n/2]^2, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)
Table[(2 n - 1) (-1)^n/8 + (2 n^2 - 2 n + 1)/8, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)
CoefficientList[Series[x^2*(1 + x^2)/((1 - x) (1 - x^2)^2), {x, 0, 49}], x] (* Michael De Vlieger, Oct 21 2016 *)
CoefficientList[Series[((x^2-x)Cosh[x]+(1+x+x^2)Sinh[x])/4,{x,0,50}],x]*Table[k!,{k,0,50}] (* Stefano Spezia, Oct 07 2018 *)
-
a(n)=(n\2)^2 \\ Charles R Greathouse IV, Sep 24 2015
-
first(n) = Vec(x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2) + O(x^n), -n) \\ Iain Fox, Dec 08 2017
-
def A008794(n): return (n//2)**2 # Chai Wah Wu, Jun 07 2022
-
[((-1)^n*(2*n-1) +(2*n^2-2*n +1))/8 for n in (0..50)] # G. C. Greubel, Sep 11 2019
A097063
Expansion of (1-2*x+3*x^2)/((1+x)*(1-x)^3).
Original entry on oeis.org
1, 0, 3, 4, 9, 12, 19, 24, 33, 40, 51, 60, 73, 84, 99, 112, 129, 144, 163, 180, 201, 220, 243, 264, 289, 312, 339, 364, 393, 420, 451, 480, 513, 544, 579, 612, 649, 684, 723, 760, 801, 840, 883, 924, 969, 1012, 1059, 1104, 1153, 1200, 1251, 1300, 1353, 1404
Offset: 0
A141611
Triangle read by rows: T(n, k) = (n-k+1)*(k+1)*binomial(n, k).
Original entry on oeis.org
1, 2, 2, 3, 8, 3, 4, 18, 18, 4, 5, 32, 54, 32, 5, 6, 50, 120, 120, 50, 6, 7, 72, 225, 320, 225, 72, 7, 8, 98, 378, 700, 700, 378, 98, 8, 9, 128, 588, 1344, 1750, 1344, 588, 128, 9, 10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10, 11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11
Offset: 0
Triangle begins as:
1;
2, 2;
3, 8, 3;
4, 18, 18, 4;
5, 32, 54, 32, 5;
6, 50, 120, 120, 50, 6;
7, 72, 225, 320, 225, 72, 7;
8, 98, 378, 700, 700, 378, 98, 8;
9, 128, 588, 1344, 1750, 1344, 588, 128, 9;
10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10;
11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11;
...
From _Peter Bala_, Mar 06 2017: (Start)
Factorization as a square array
/1 \ /1 2 3 4...\ /1 2 3 4...\
|2 2 | | 2 6 12...| |2 8 12 32...|
|3 6 3 |*| 3 12...|=|3 18 54 120...|
|4 12 12 4 | | 4...| |4 32 120 320...|
|... | | | |... |
(End)
-
A141611:= func< n,k | (k+1)*(n-k+1)*Binomial(n,k) >;
[A141611(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 22 2024
-
T[n_, m_]:= (n-m+1)*(m+1)*Binomial[n,m];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
T(n,m)=(n - m + 1)*(m + 1)*binomial(n, m) \\ Charles R Greathouse IV, Feb 15 2017
-
def A141611(n,k): return (k+1)*(n-k+1)*binomial(n,k)
flatten([[A141611(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Sep 22 2024
A053545
Comparisons needed for Batcher's sorting algorithm applied to 2^n items.
Original entry on oeis.org
0, 1, 5, 19, 63, 191, 543, 1471, 3839, 9727, 24063, 58367, 139263, 327679, 761855, 1753087, 3997695, 9043967, 20316159, 45350911, 100663295, 222298111, 488636415, 1069547519, 2332033023, 5066719231, 10972299263, 23689428991, 51002736639, 109521666047, 234612588543, 501437431807
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- I. Wegener, The Complexity of Boolean Functions, Wiley, 1987, see p. 151, (2.7).
- Index entries for linear recurrences with constant coefficients, signature (7,-18,20,-8).
The size of a maximal independent set in this graph (1, 1, 2, 2, 4, 6, 10, ...) agrees with
A000016 for n <= 7 (and probably for n=8).
-
[2^(n-2)*(n^2-n+4)-1: n in [0..30]]; // Vincenzo Librandi, Oct 10 2011
-
A053545:=n->2^(n - 2)*(n^2 - n + 4) - 1; seq(A053545(n), n=0..30); # Wesley Ivan Hurt, Apr 01 2014
-
Table[2^(n-2)(n^2-n+4)-1,{n,0,30}] (* or *) LinearRecurrence[{7,-18,20,-8},{0,1,5,19},30] (* Harvey P. Dale, Apr 03 2013 *)
-
a(n)=2^(n-2)*(n^2-n+4)-1 \\ Charles R Greathouse IV, Feb 19 2017
A228643
Triangle read by rows: T(n,1) = n * (n - 1) + 1 and for k: 1 < k <= n: T(n,k) = T(n,k-1) + T(n-1,k-1).
Original entry on oeis.org
1, 3, 4, 7, 10, 14, 13, 20, 30, 44, 21, 34, 54, 84, 128, 31, 52, 86, 140, 224, 352, 43, 74, 126, 212, 352, 576, 928, 57, 100, 174, 300, 512, 864, 1440, 2368, 73, 130, 230, 404, 704, 1216, 2080, 3520, 5888, 91, 164, 294, 524, 928, 1632, 2848, 4928, 8448
Offset: 1
. 1: 1
. 2: 3, 4
. 3: 7, 10, 14
. 4: 13, 20, 30, 44
. 5: 21, 34, 54, 84, 128
. 6: 31, 52, 86,140, 224, 352
. 7: 43, 74,126,212, 352, 576, 928
. 8: 57,100,174,300, 512, 864,1440,2368
. 9: 73,130,230,404, 704,1216,2080,3520, 5888
. 10: 91,164,294,524, 928,1632,2848,4928, 8448,14336
. 11: 111,202,366,660,1184,2112,3744,6592,11520,19968,34304
. 12: 133,244,446,812,1472,2656,4768,8512,15104,26624,46592,80896.
-
a228643 n k = a228643_tabl !! (n-1) !! (k-1)
a228643_row n = a228643_tabl !! (n-1)
a228643_tabl = map fst $ iterate
(\(row, x) -> (scanl (+) (x * (x - 1) + 1) row, x + 1)) ([1], 2)
A340257
a(n) = 2^n * (1+n*(n+1)/2).
Original entry on oeis.org
1, 4, 16, 56, 176, 512, 1408, 3712, 9472, 23552, 57344, 137216, 323584, 753664, 1736704, 3964928, 8978432, 20185088, 45088768, 100139008, 221249536, 486539264, 1065353216, 2323644416, 5049942016, 10938744832, 23622320128, 50868518912, 109253230592, 234075717632
Offset: 0
-
a:= n-> 2^n*(1+n*(n+1)/2):
seq(a(n), n=0..30);
-
Table[2^n (1+(n(n+1))/2),{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{1,4,16},30] (* Harvey P. Dale, Jan 19 2023 *)
A087431
a(n) = 0^n/2 + 2^n*(n^2+n+2)/4.
Original entry on oeis.org
1, 2, 8, 28, 88, 256, 704, 1856, 4736, 11776, 28672, 68608, 161792, 376832, 868352, 1982464, 4489216, 10092544, 22544384, 50069504, 110624768, 243269632, 532676608, 1161822208, 2524971008, 5469372416, 11811160064, 25434259456
Offset: 0
-
LinearRecurrence[{6,-12,8},{1,2,8,28},30] (* Harvey P. Dale, Nov 26 2015 *)
A383623
a(n) = 4^n - (n^2 + 3*n + 4)*2^(n-2).
Original entry on oeis.org
0, 0, 2, 20, 128, 672, 3168, 14016, 59648, 247808, 1014272, 4113408, 16588800, 66674688, 267444224, 1071497216, 4289921024, 17168596992, 68694441984, 274822594560, 1099389992960, 4397780172800, 17591605133312, 70367481692160, 281472242024448
Offset: 0
a(3)=20 since the strings are 220 (3 of this type), 221 (3 of this type), 223 (3 of this type), 330 (3 of this type), 331 (3 of this type), 332 (3 of this type), 222 and 333.
Showing 1-8 of 8 results.
Comments