cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A080961 Fourth binomial transform of A010686 (period 2: repeat 1,5).

Original entry on oeis.org

1, 9, 57, 321, 1713, 8889, 45417, 230001, 1158753, 5820009, 29178777, 146130081, 731358993, 3658920729, 18300980937, 91524036561, 457677578433, 2288560079049, 11443316955897, 57218134461441, 286095321353073, 1430490553902969, 7152494610927657, 35762598578876721
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Examples

			G.f. = 1 + 9*x + 57*x^2 + 321*x^3 + 1713*x^4 + 8889*x^5 + 45417*x^6 + 230001*x^7 + ...
		

Crossrefs

Programs

  • Magma
    binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >;
    binomtf(binomtf(binomtf(binomtf(&cat[ [1, 5]: n in [1..11] ])))); // Klaus Brockhaus, Nov 26 2009
    
  • Magma
    [3*5^n - 2*3^n: n in [0..30]]; // Vincenzo Librandi, Dec 07 2012
  • Maple
    A080961:=n->3*5^n-2*3^n: seq(A080961(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2016
  • Mathematica
    CoefficientList[Series[(1 + x)/((1 - 3*x) * (1 - 5*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 07 2012 *)

Formula

a(n) = 5*a(n-1) + 4*3^(n-1).
a(n) = 3*5^n - 2*3^n.
G.f.: (1+x)/((1-3*x)*(1-5*x)). - Klaus Brockhaus, Nov 26 2009
From Mario C. Enriquez, Dec 08 2016: (Start)
a(n) = A005059(n+1) + A005059(n) = (5^(n+1)+5^n-3^(n+1)-3^n)/2.
a(n) = Sum_{k=0..n} A003948(n-k)*3^k = Sum_{k=0..n} (3^k * ceiling(Sum_{v=0..n-k} (5^v - 5^(v-2)))). (End)
a(n) = 8*a(n-1) - 15*a(n-2) for n > 1. - Wesley Ivan Hurt, Dec 08 2016
E.g.f.: exp(3*x)*(3*exp(2*x) - 2). - Stefano Spezia, Jul 23 2024

Extensions

Definition corrected, edited by Klaus Brockhaus, Nov 26 2009

A173114 a(0)=a(1)=1, a(n) = 2*a(n-1)- A010686(n), n>1.

Original entry on oeis.org

1, 1, 1, -3, -7, -19, -39, -83, -167, -339, -679, -1363, -2727, -5459, -10919, -21843, -43687, -87379, -174759, -349523, -699047, -1398099, -2796199, -5592403, -11184807, -22369619, -44739239, -89478483, -178956967, -357913939, -715827879, -1431655763
Offset: 0

Views

Author

Paul Curtz, Feb 10 2010

Keywords

Comments

The sequence in the first row and successive differences in followup rows defines the array
1, 1, 1, -3, -7, -19, -39, -83, -167, -339, ..
0, 0, -4, -4, -12, -20, -44, -84, -172, -340, ..
0, -4, 0, -8, -8, -24, -40, -88, -168, -344, ..
-4, 4, -8, 0, -16, -16, -48, -80, -176, -336, ..
8, -12, 8, -16, 0, -32, -32, -96, -160, -352, ..
The first two subdiagonals show essentially the powers of 2.

Formula

a(n) = 3 + 2*( (-1)^n-2^n )/3 = 3-A078008(n+1), n>0. - R. J. Mathar, Jun 30 2010
a(n+2)-a(n)= A154589(n+2) = -2^(n+1), n>0.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3), n>3.
G.f.: (-x-2*x^2-4*x^3+1)/( (1-x)*(1-2*x)*(1+x) ).
a(n) + A173078(n) = 2^n.
a(n) - a(n-1) = -4*A001045(n-2) = -A097074(n-1), n>1.

Extensions

Edited and extended by R. J. Mathar, Jun 30 2010

A039599 Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023

Examples

			Triangle T(n, k) begins:
  n\k     0     1     2     3     4     5    6   7   8  9
  0:      1
  1:      1     1
  2:      2     3     1
  3:      5     9     5     1
  4:     14    28    20     7     1
  5:     42    90    75    35     9     1
  6:    132   297   275   154    54    11    1
  7:    429  1001  1001   637   273    77   13   1
  8:   1430  3432  3640  2548  1260   440  104  15   1
  9:   4862 11934 13260  9996  5508  2244  663 135  17  1
  ... Reformatted by _Wolfdieter Lang_, Dec 21 2015
From _Paul Barry_, Feb 17 2011: (Start)
Production matrix begins
  1, 1,
  1, 2, 1,
  0, 1, 2, 1,
  0, 0, 1, 2, 1,
  0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
  2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

Crossrefs

Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
    
  • Maple
    T:=(n,k)->(2*k+1)*binomial(2*n,n-k)/(n+k+1): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
    T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1,1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
  • Mathematica
    Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0,7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
    Join[{1},Flatten[Table[Binomial[2n-1,n-k]-Binomial[2n-1,n-k-2],{n,10},{k,0,n}]]] (* Harvey P. Dale, Dec 18 2011 *)
    Flatten[Table[Binomial[2*n,m+n]*(2*m+1)/(m+n+1),{n,0,9},{m,0,n}]] (* Jayanta Basu, Apr 30 2013 *)
  • PARI
    a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
    trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle
    def A039599_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True ; h = 1
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            if b : print([D[z] for z in (1..h-1)])
            b = not b
    A039599_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019

Extensions

Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009

A144706 Central coefficients of the triangle A132047.

Original entry on oeis.org

1, 6, 18, 60, 210, 756, 2772, 10296, 38610, 145860, 554268, 2116296, 8112468, 31201800, 120349800, 465352560, 1803241170, 7000818660, 27225405900, 106035791400, 413539586460, 1614773623320, 6312296891160, 24700292182800, 96742811049300, 379231819313256
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Comments

Hankel transform is A144708.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 3*(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jun 16 2022
    
  • Mathematica
    Table[3*Binomial[2n,n] -2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
  • PARI
    a(n) = if(n, 3*binomial(2*n, n), 1) \\ Charles R Greathouse IV, Oct 23 2023
  • SageMath
    [3*binomial(2*n, n) -2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
    

Formula

G.f.: 3/sqrt(1-4*x) - 2;
a(n) = 3*binomial(2*n, n) - 2*0^n.
From Philippe Deléham, Oct 30 2008: (Start)
a(n) = Sum_{k=0..n} A039599(n,k)*A010686(k).
a(n) = Sum_{k=0..n} A106566(n,k)*A082505(k+1). (End)
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1). - R. J. Mathar, Nov 30 2012
E.g.f.: -2 + 3*exp(2*x)*BesselI(0, 2*x). - G. C. Greubel, Jun 16 2022

A176015 Decimal expansion of (5 + 3*sqrt(5))/10.

Original entry on oeis.org

1, 1, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2, 2, 5, 1, 3, 6, 3, 4, 6, 8, 2, 4, 9, 0, 8, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (5 + 3*sqrt(5))/10 is A010686.
The horizontal distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the vertical distance is A244847). - Amiram Eldar, May 18 2021

Examples

			(5 + 3*sqrt(5))/10 = 1.17082039324993690892...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.

Crossrefs

Cf. A000032, A000045, A001622, A002163 (decimal expansion of sqrt(5)), A010686 (repeat 1, 5), A090550, A134976.
Cf. A010499 (decimal expansion of 3*sqrt(5)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=(5+3*Sqrt(5))/10; Reverse(Intseq(Floor(10^104*n))); // Arkadiusz Wesolowski, Jan 07 2018
    
  • Maple
    Digits := 1000:  (5+3*sqrt(5.0))/10; # Muniru A Asiru, Jan 22 2018
  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/10, 10, 1001][[1]] (* Georg Fischer, Apr 02 2020 *)
  • PARI
    (5 + 3*sqrt(5))/10 \\ Michel Marcus, Apr 20 2020

Formula

Equals (A134976 + 8)/10. - R. J. Mathar, Apr 12 2010
From Arkadiusz Wesolowski, Jan 07 2018: (Start)
Equals A001622^2 / sqrt(5).
Equals lim_{n -> infinity} A000045(n+2) / A001622^n. (End)
Equals 1/A090550 + 1. - Michel Marcus, Apr 20 2020
Minimal polynomial is 5x^2 - 5x - 1 (this number is an algebraic number but not an algebraic integer). - Alonso del Arte, Apr 20 2020
Equals lim_{k->oo} Fibonacci(k+2)/Lucas(k). - Amiram Eldar, Feb 06 2022

A047225 Numbers that are congruent to {0, 1} mod 6.

Original entry on oeis.org

0, 1, 6, 7, 12, 13, 18, 19, 24, 25, 30, 31, 36, 37, 42, 43, 48, 49, 54, 55, 60, 61, 66, 67, 72, 73, 78, 79, 84, 85, 90, 91, 96, 97, 102, 103, 108, 109, 114, 115, 120, 121, 126, 127, 132, 133, 138, 139, 144, 145, 150
Offset: 1

Views

Author

Keywords

Comments

Also: 0 followed by partial sums of A010686. - R. J. Mathar, Feb 23 2008
Expansion of 1/(1 + x + x^2 + x^3 + x^4 + x^5) = 1 - x + x^6 - x^7 + x^12 - x^13 + ... and the exponents are the terms of this sequence. - Gary W. Adamson, Apr 04 2011
Numbers k such that floor(k/2) = 3*floor(k/6). - Bruno Berselli, Oct 05 2017

Crossrefs

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+6 od: seq(a[n], n=0..50); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    {#,#+1}&/@(6Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{0,1,6},60] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    forstep(n=0,200,[1,5],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011

Formula

From R. J. Mathar, Feb 23 2008: (Start)
O.g.f.: 1/(1+x) + 3/(-1+x)^2 + 4/(-1+x).
a(n) = a(n-2) + 6, n >= 2. (End)
a(n) = 6*n - a(n-1) - 11 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A082505(k+1). - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/12 + log(2)/3 + log(3)/4. - Amiram Eldar, Dec 13 2021
E.g.f.: 5 + (3*x - 4)*exp(x) - exp(-x). - David Lovler, Aug 25 2022

Extensions

Formula corrected by Paolo P. Lava, Oct 12 2010

A165734 Period 2: repeat 6,30.

Original entry on oeis.org

6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30, 6, 30
Offset: 1

Views

Author

Paul Curtz, Sep 25 2009

Keywords

Comments

Continued fraction expansion of (15+sqrt(230))/5. - Klaus Brockhaus, Apr 28 2010

Crossrefs

Programs

Formula

From Philippe Deléham, Sep 27 2009: (Start)
G.f.: 6x(1+5x)/((1-x)(1+x)).
a(n) = 6*A010686(n-1). (End)

Extensions

Edited by N. J. A. Sloane, Sep 25 2009

A195035 Multiples of 15 and of 8 interleaved: a(2n-1) = 15n, a(2n) = 8n.

Original entry on oeis.org

15, 8, 30, 16, 45, 24, 60, 32, 75, 40, 90, 48, 105, 56, 120, 64, 135, 72, 150, 80, 165, 88, 180, 96, 195, 104, 210, 112, 225, 120, 240, 128, 255, 136, 270, 144, 285, 152, 300, 160, 315, 168, 330, 176, 345, 184, 360, 192, 375, 200, 390, 208, 405, 216
Offset: 1

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

First differences of A195036.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [15, 8, 17]. Zero together with partial sums give A195036; the vertices of the spiral.

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(15+8*x)/((1-x)^2*(1+x)^2).
a(n) = A010686(n)*A010706(n-1)*A004526(n+1) = (23*n-(7*n+15)*(-1)^n+15)/4.
a(n) = 2*a(n-2) - a(n-4).
a(-n) = -a(A014681(n-1)). (End)

A165665 a(n) = (3*2^n - 2) * 2^n.

Original entry on oeis.org

1, 8, 40, 176, 736, 3008, 12160, 48896, 196096, 785408, 3143680, 12578816, 50323456, 201310208, 805273600, 3221159936, 12884770816, 51539345408, 206157905920, 824632672256, 3298532786176, 13194135339008, 52776549744640
Offset: 0

Views

Author

Klaus Brockhaus, Sep 24 2009

Keywords

Comments

Binomial transform of A058481. Second binomial transform of (A082505 without initial term 0). Third binomial transform of A010686.
Partial sums are in A060867.
a(n) is the sum of the odd numbers taken progressively by moving through them by 2^n-tuples. a(0)=1; a(1) = 3+5=8; a(2) = 7+9+11+13 = 40; a(3) = 15+17+19+21+23+25+27+29 = 176; a(n) = sum_{k=0,1,..,A000225(n)} (A000225(n+1)+2*k). - J. M. Bergot, Dec 06 2014
The number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016

Crossrefs

Cf. A058481, A082505, A010686 (repeat 1, 5), A060867, A010036, A124647.

Programs

  • Magma
    [ (3*2^n-2)*2^n: n in [0..23] ];
    
  • Mathematica
    Table[(3*2^n-2)2^n,{n,0,30}] (* or  *) LinearRecurrence[{6,-8},{1,8},30] (* Harvey P. Dale, Nov 18 2020 *)
  • PARI
    a(n)=(3*2^n-2)*2^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
a(n) = 8*A010036(n-1) for n > 0.
G.f.: (2*x+1)/((1-2*x)*(1-4*x)).
E.g.f.: 3*e^(4*x) - 2*e^(2*x). - Robert Israel, Dec 15 2014

A346741 Irregular triangle read by rows which is constructed in row n replacing the first A000070(n-1) terms of A336811 with their divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 31 2021

Keywords

Comments

The terms in row n are also all parts of all partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For further information about the correspondence divisor/part see A336811 and A338156.

Examples

			Triangle begins:
[1];
[1],[1, 2];
[1],[1, 2],[1, 3],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1],[1, 5],[1, 3],[1, 2],[1],[1];
...
Below the table shows the correspondence divisor/part.
|---|-----------------|-----|-------|---------|-----------|-------------|
| n |                 |  1  |   2   |    3    |     4     |      5      |
|---|-----------------|-----|-------|---------|-----------|-------------|
| P |                 |     |       |         |           |             |
| A |                 |     |       |         |           |             |
| R |                 |     |       |         |           |             |
| T |                 |     |       |         |           |  5          |
| I |                 |     |       |         |           |  3 2        |
| T |                 |     |       |         |  4        |  4 1        |
| I |                 |     |       |         |  2 2      |  2 2 1      |
| O |                 |     |       |  3      |  3 1      |  3 1 1      |
| N |                 |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |                 |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
----|-----------------|-----|-------|---------|-----------|-------------|
.
|---|-----------------|-----|-------|---------|-----------|-------------|
|   |         A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |                 |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I |         A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |                 |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K |         A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |                 |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   |         A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|-----------------|-----|-------|---------|-----------|-------------|
.
.   |-------|
.   |Section|
|---|-------|---------|-----|-------|---------|-----------|-------------|
|   |   1   | A000012 |  1  |  1    |  1      |  1        |  1          |
|   |-------|---------|-----|-------|---------|-----------|-------------|
|   |   2   | A000034 |     |  1 2  |  1 2    |  1 2      |  1 2        |
|   |-------|---------|-----|-------|---------|-----------|-------------|
| D |   3   | A010684 |     |       |  1   3  |  1   3    |  1   3      |
| I |       | A000012 |     |       |  1      |  1        |  1          |
| V |-------|---------|-----|-------|---------|-----------|-------------|
| I |   4   | A069705 |     |       |         |  1 2   4  |  1 2   4    |
| S |       | A000034 |     |       |         |  1 2      |  1 2        |
| O |       | A000012 |     |       |         |  1        |  1          |
| R |-------|---------|-----|-------|---------|-----------|-------------|
| S |   5   | A010686 |     |       |         |           |  1       5  |
|   |       | A010684 |     |       |         |           |  1   3      |
|   |       | A000034 |     |       |         |           |  1 2        |
|   |       | A000012 |     |       |         |           |  1          |
|   |       | A000012 |     |       |         |           |  1          |
|---|-------|---------|-----|-------|---------|-----------|-------------|
.
In the above table both the zone of partitions and the "Link" zone are the same zones as in the table of the example section of A338156, but here in the lower zone the divisors are ordered in accordance with the sections of the set of partitions of n.
The number of rows in the j-th section of the lower zone is equal to A000041(j-1).
The divisors of the j-th section are also the parts of the j-th section of the set of partitions of n.
		

Crossrefs

Another version of A338156.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812.
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).
Showing 1-10 of 19 results. Next