cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A008589 Multiples of 7.

Original entry on oeis.org

0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Also the Engel expansion of exp(1/7); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Complement of A047304; A082784(a(n))=1; A109720(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
The most likely sum of digits to occur when randomly tossing n pairs of (fair) six-sided dice. - Dennis P. Walsh, Jan 26 2012

Examples

			For n=2, a(2)=14 because 14 is the most likely sum (of the possible sums 4, 5, ..., 24) to occur when tossing 2 pairs of six-sided dice. - _Dennis P. Walsh_, Jan 26 2012
		

Crossrefs

Programs

Formula

(floor(a(n)/10) - 2*(a(n) mod 10)) == 0 modulo 7, see A076309. - Reinhard Zumkeller, Oct 06 2002
a(n) = 7*n = 2*a(n-1)-a(n-2); G.f.: 7*x/(x-1)^2. - Vincenzo Librandi, Dec 24 2010
E.g.f.: 7*x*exp(x). - Ilya Gutkovskiy, May 11 2016

A020658 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99
Offset: 1

Views

Author

Keywords

Comments

This is different from A047304: note the gap between 41 and 50. - M. F. Hasler, Oct 07 2014

Crossrefs

Cf. A047304.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100, 7); # Robert Israel, Jan 04 2016
  • Mathematica
    Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] + 1 (* Jean-François Alcover, Aug 18 2023, after M. F. Hasler *)

Formula

a(n) = A020657(n)+1. - M. F. Hasler, Oct 07 2014

A082784 Characteristic function of multiples of 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

This sequence is the Euler transformation of A185017. - Jason Kimberley, Oct 14 2011

Examples

			a(14) = a(2*7) = 1; a(41) = a(5*7+6) = 0.
		

Crossrefs

Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), this sequence (g=7). - Jason Kimberley, Oct 14 2011

Programs

Formula

a(n) = 0^(n mod 7).
a(0)=1, a(n)=0 for 1<=n<7, a(n+7)=a(n).
a(n) = 1 - (n^6 mod 7). - Paolo P. Lava, Oct 02 2006
a(n) = 1 - A109720(n); a(A008589(n)) = 1; a(A047304(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor(n/7)-floor((n-1)/7). - Tani Akinari, Oct 26 2012
a(n) = C(n-1,6) mod 7. - Wesley Ivan Hurt, Oct 07 2014
From Wesley Ivan Hurt, Jul 11 2016: (Start)
G.f.: 1/(1-x^7).
a(n) = a(n-7) for n>6.
a(n) = (gcd(n,7) - 1)/6. (End)

Extensions

Wrong formula and keyword mult removed by Amiram Eldar, Oct 31 2023

A109720 Periodic sequence {0,1,1,1,1,1,1} or n^6 mod 7.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Aug 09 2005

Keywords

Comments

This sequence also represents n^12 mod 7; n^18 mod 7; (exponents are = 0 mod 6).
Characteristic sequence for numbers n>=1 to be relatively prime to 7. - Wolfdieter Lang, Oct 29 2008
a(n+4), n>=0, (periodic 1,1,1,0,1,1,1) is also the characteristic sequence for mod m reduced positive odd numbers (i.e., gcd(2*n+1,m)=1, n>=0) for each modulus m from 7*A003591 = [7,14,28,49,56,98,112,196,...]. [Wolfdieter Lang, Feb 04 2012]

Crossrefs

Cf. A010876 = n mod 7; A053879 = n^2 mod 7; A070472 = m^3 mod 7; A070512 = n^4 mod 7; A070593 = n^5 mod 7.

Programs

Formula

a(n) = 0 if n=0 mod 7; a(n)= 1 else.
G.f. = (x+x^2+x^3+x^4+x^5+x^6)/(1-x^7)= -x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( (x-1)*(1+x+x^2+x^3+x^4+x^5+x^6) ).
a(n)=1-A082784(n); a(A047304(n))=1; a(A008589(n))=0; A033439(n) = SUM(a(k)*(n-k): 0<=k<=n). - Reinhard Zumkeller, Nov 30 2009
Multiplicative with a(p) = (if p=7 then 0 else 1), p prime. - Reinhard Zumkeller, Nov 30 2009
Dirichlet g.f. (1-7^(-s))*zeta(s). - R. J. Mathar, Mar 06 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013

A319528 a(n) = 8 * sigma(n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Comments

8 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every 45-degree three-dimensional sector arises after the 45-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is an eight-pointed star formed by eight rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
  • Maple
    with(numtheory): seq(8*sigma(n), n=1..64);
  • Mathematica
    8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
  • PARI
    a(n) = 8 * sigma(n);
    

Formula

a(n) = 8*A000203(n) = 4*A074400(n) = 2*A239050(n).
a(n) = A000203(n) + A319527(n).
Dirichlet g.f.: 8*zeta(s-1)*zeta(s). (After Ilya Gutkovskiy)
Conjecture: a(n) = sigma(7*n) = A283078(n) iff n is not a multiple of 7.
Conjecture is true, since sigma is multiplicative, so if (7,n) = 1 then sigma(7*n) = sigma(7)*sigma(n) = 8*sigma(n). - Charlie Neder, Oct 02 2018

A123866 a(n) = n^6 - 1.

Original entry on oeis.org

0, 63, 728, 4095, 15624, 46655, 117648, 262143, 531440, 999999, 1771560, 2985983, 4826808, 7529535, 11390624, 16777215, 24137568, 34012223, 47045880, 63999999, 85766120, 113379903, 148035888, 191102975, 244140624, 308915775, 387420488
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 7 = 0 iff n mod 7 > 0: a(A008589(n))=6; a(A047304(n)) = 0; a(n) mod 7 = 6*(1-A082784(n)).
a(n) = A005563(n-1)*A059826(n) = A068601(n)*A001093(n). - Reinhard Zumkeller, Feb 02 2007

Crossrefs

Programs

Formula

G.f.: x^2*(63 + 287*x + 322*x^2 + 42*x^3 + 7*x^4 - x^5)/(1-x)^7. - Colin Barker, May 08 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=0, a(2)=63, a(3)=728, a(4)=4095, a(5)=15624, a(6)=46655, a(7)=117648. - Harvey P. Dale, Nov 18 2012
Sum_{n>=2} 1/a(n) = 11/12 - Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/6. - Vaclav Kotesovec, Feb 14 2015
E.g.f.: 1 + (-1 + x + 31*x^2 + 90*x^3 + 65*x^4 + 15*x^5 + x^6)*exp(x). - G. C. Greubel, Aug 08 2019
Product_{n>=2} (1 + 1/a(n)) = 6*Pi^2*sech(sqrt(3)*Pi/2)^2. - Amiram Eldar, Jan 20 2021

A125704 Table read by antidiagonals: row n contains the positive integers (in order) which are coprime to the n-th prime.

Original entry on oeis.org

1, 1, 3, 1, 2, 5, 1, 2, 4, 7, 1, 2, 3, 5, 9, 1, 2, 3, 4, 7, 11, 1, 2, 3, 4, 6, 8, 13, 1, 2, 3, 4, 5, 7, 10, 15, 1, 2, 3, 4, 5, 6, 8, 11, 17, 1, 2, 3, 4, 5, 6, 8, 9, 13, 19, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 21, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 23, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 25, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Leroy Quet, Jan 31 2007

Keywords

Examples

			Beginning of table:
  1,  3,  5,  7,  9, 11, 13, ...
  1,  2,  4,  5,  7,  8, 10, 11, ...
  1,  2,  3,  4,  6,  7,  8,  9, 11, ...
  1,  2,  3,  4,  5,  6,  8,  9, 10, ...
		

Programs

  • Maple
    A125704 := proc(n,m) local p,i,a ; p := ithprime(n) ; a := 1 ; for i from 2 to m do a := a+1 ; while gcd(a,p) <> 1 do a := a+1 ; od ; od ; RETURN(a) ; end : maxdiag := 15 ; for d from 1 to maxdiag do for n from d to 1 by -1 do printf("%d,",A125704(n,d-n+1)) ; od ; od; # R. J. Mathar, Feb 02 2007
  • Mathematica
    Table[Function[n, k - 1 + Floor[(k + Prime[n] - 2)/(Prime[n] - 1)]][m - k + 1], {m, 14}, {k, m}] // Flatten (* Michael De Vlieger, Oct 10 2017, after PARI by Benoit Cloitre *)
  • PARI
    T(n,m)=m-1+floor((m+prime(n)-2)/(prime(n)-1)) \\ Benoit Cloitre, Jul 11 2009

Formula

T(1,m) = A005408(m). T(2,m) = A001651(m). T(3,m) = A047201(m). T(4,m) = A047304(m). - R. J. Mathar, Feb 02 2007
T(n,m) = m - 1 + floor((m+prime(n)-2)/(prime(n)-1)) where prime(n) = n-th prime. - Benoit Cloitre, Jul 11 2009

Extensions

More terms from R. J. Mathar, Feb 02 2007

A056910 Numbers k such that 36*k^2 + 12*k + 7 is prime (sorted by absolute values with negatives before positives).

Original entry on oeis.org

0, -1, -2, 3, 4, 5, -6, 10, -11, 13, -15, 15, 18, -22, 24, 25, 29, -31, 33, -37, -45, -55, 55, 59, -67, -72, 74, 80, -81, 85, -86, 88, -90, -95, 99, -101, -102, 108, -116, 118, -122, 129, -130, 143, 148, -151, -155, -157, 158, 159, -162, 164, 165
Offset: 0

Views

Author

Henry Bottomley, Jul 07 2000

Keywords

Comments

36*k^2 + 12*k + 7 = (6*k+1)^2 + 6, which is six more than a square.

Examples

			a(2)=-2 since 36*(-2)^2 + 12*(-2) + 7 = 127, which is prime (as well as being six more than a square).
		

Crossrefs

This sequence and formula generate all primes of the form k^2+6, i.e., A056909. Except for the first term, none of the a(n) are a multiple of 7 and so the rest of this sequence is a subsequence of A047304. Cf. A056900, A056902, A056904, A056906, A056907, A056908.

Formula

a(n) = (-1 +- sqrt(A056909(n) - 6))/6, choosing +- to give an integer result for each n.

A067761 Positive integers divisible by 5 but not by 7.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 40, 45, 50, 55, 60, 65, 75, 80, 85, 90, 95, 100, 110, 115, 120, 125, 130, 135, 145, 150, 155, 160, 165, 170, 180, 185, 190, 195, 200, 205, 215, 220, 225, 230, 235, 240, 250, 255, 260, 265, 270, 275, 285, 290, 295, 300, 305, 310, 320
Offset: 1

Views

Author

Jonathan A. Heese (macgyver86(AT)aol.com), Feb 06 2002

Keywords

References

  • Kenneth H. Rosen, Discrete Mathematics and Its Applications, 4th Ed., p. 79, 1.7.32.b.

Crossrefs

Cf. A047304.

Programs

  • Mathematica
    Select[Range[65]*5, Mod[5#, 7] != 0 &] (* corrected by Georg Fischer, Jun 17 2020 *)

Formula

a(n) = 5*A047304(n). - Zak Seidov, Mar 19 2014
a(n) = a(n - 6) + 35. - David A. Corneth, Jun 17 2020
G.f.: 5*x*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^7-x^6-x+1). - Alois P. Heinz, Jun 17 2020

Extensions

Edited by Robert G. Wilson v, Feb 07 2002
a(36)=205 corrected by Georg Fischer, Jun 17 2020
Showing 1-9 of 9 results.