A198286 a(n) = Sum_{d|n} (A053143(d) or smallest square divisible by d).
1, 5, 10, 9, 26, 50, 50, 25, 19, 130, 122, 90, 170, 250, 260, 41, 290, 95, 362, 234, 500, 610, 530, 250, 51, 850, 100, 450, 842, 1300, 962, 105, 1220, 1450, 1300, 171, 1370, 1810, 1700, 650, 1682, 2500, 1850, 1098, 494, 2650, 2210, 410, 99, 255, 2900, 1530, 2810
Offset: 1
Examples
a(18) = 95 because 18=2*3^2, so a(18) = (1+4)(1+9+9) = 5*19 = 95. a(20) = 234 because 20=2^2*5, so a(20) = (1+4+4)(1+25) = 9*26 = 234.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
ssq[n_] := For[k=1, True, k++, If[ Divisible[s = k^2, n], Return[s]]]; a[n_] := Sum[ ssq[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 53}] (* Jean-François Alcover, Sep 03 2012 *) f[p_, e_] := If[OddQ[e], (1+p^2)((p^(e+1)-1)/(p^2-1)), 1+2*(p^(e+2)-p^2)/(p^2-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 53] (* Amiram Eldar, Sep 05 2020 *)
-
PARI
a(n)=sumdiv(n,d,d*core(d)) \\ Charles R Greathouse IV, Oct 30 2011
Formula
Dirichlet g.f.: zeta(s)*zeta(s-2)*zeta(2s-2)/zeta(2s-4). - R. J. Mathar, Mar 12 2012
Sum_{k=1..n} a(k) ~ Pi^2 * Zeta(3) * n^3 / 45. - Vaclav Kotesovec, Feb 02 2019
Comments