cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A291000 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,1,1,1,...) = A000012, in some cases t(1,1,1,1,1,...) is a shifted version of the cited sequence:
p(S) t(1,1,1,1,1,...)
1 - S A000079
1 - S^2 A000079
1 - S^3 A024495
1 - S^4 A000749
1 - S^5 A139761
1 - S^6 A290993
1 - S^7 A290994
1 - S^8 A290995
1 - S - S^2 A001906
1 - S - S^3 A116703
1 - S - S^4 A290996
1 - S^3 - S^6 A290997
1 - S^2 - S^3 A095263
1 - S^3 - S^4 A290998
1 - 2 S^2 A052542
1 - 3 S^2 A002605
1 - 4 S^2 A015518
1 - 5 S^2 A163305
1 - 6 S^2 A290999
1 - 7 S^2 A291008
1 - 8 S^2 A291001
(1 - S)^2 A045623
(1 - S)^3 A058396
(1 - S)^4 A062109
(1 - S)^5 A169792
(1 - S)^6 A169793
(1 - S^2)^2 A024007
1 - 2 S - 2 S^2 A052530
1 - 3 S - 2 S^2 A060801
(1 - S)(1 - 2 S) A053581
(1 - 2 S)(1 - 3 S) A291002
(1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S) A291003
(1 - 2 S)^2 A120926
(1 - 3 S)^2 A291004
1 + S - S^2 A000045 (Fibonacci numbers starting with -1)
1 - S - S^2 - S^3 A291000
1 - S - S^2 - S^3 - S^4 A291006
1 - S - S^2 - S^3 - S^4 - S^5 A291007
1 - S^2 - S^4 A290990
(1 - S)(1 - 3 S) A291009
(1 - S)(1 - 2 S)(1 - 3 S) A291010
(1 - S)^2 (1 - 2 S) A291011
(1 - S^2)(1 - 2 S) A291012
(1 - S^2)^3 A291013
(1 - S^3)^2 A291014
1 - S - S^2 + S^3 A045891
1 - 2 S - S^2 + S^3 A291015
1 - 3 S + S^2 A136775
1 - 4 S + S^2 A291016
1 - 5 S + S^2 A291017
1 - 6 S + S^2 A291018
1 - S - S^2 - S^3 + S^4 A291019
1 - S - S^2 - S^3 - S^4 + S^5 A291020
1 - S - S^2 - S^3 + S^4 + S^5 A291021
1 - S - 2 S^2 + 2 S^3 A175658
1 - 3 S^2 + 2 S^3 A291023
(1 - 2 S^2)^2 A291024
(1 - S^3)^3 A291143
(1 - S - S^2)^2 A209917

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291000 *)

Formula

G.f.: (-1 + x - x^2)/(-1 + 4 x - 4 x^2 + 2 x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) for n >= 4.

A027649 a(n) = 2*(3^n) - 2^n.

Original entry on oeis.org

1, 4, 14, 46, 146, 454, 1394, 4246, 12866, 38854, 117074, 352246, 1058786, 3180454, 9549554, 28665046, 86027906, 258149254, 774578834, 2323998646, 6972520226, 20918609254, 62757924914, 188277969046, 564842295746, 1694543664454, 5083664547794, 15251060752246
Offset: 0

Views

Author

Keywords

Comments

Poly-Bernoulli numbers B_n^(k) with k=-2.
Binomial transform of A007051, if both sequences start at 0. Binomial transform of A000225(n+1). - Paul Barry, Mar 24 2003
Euler expands (1-z)/(1-5z+6z^2) and finds the general term. Section 226 of the Introductio indicates that he could have written down the recursion relation: a(n) = 5 a(n-1)-6 a(n-2). - V. Frederick Rickey (fred-rickey(AT)usma.edu), Feb 10 2006
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xRy if x is a subset of y or y is a subset of x. Then a(n) = |R|. - Ross La Haye, Dec 22 2006
With regard to the comment by Ross La Haye: For proper subsets see A056182. - For nonempty subsets see A091344. - For nonempty proper subsets see a(n+1) in A260217. - Manfred Boergens, Aug 02 2023
If x, y are two n-bit binary strings then a(n) gives the number of pairs (x,y) such that XOR(x, y) = ABS(x - y). - Ramasamy Chandramouli, Feb 15 2009
Equals row sums of the triangular version of A038573. - Gary W. Adamson, Jun 04 2009
Inverse binomial transform of A085350. - Paul Curtz, Nov 14 2009
Related to the number of even a's in a nontrivial cycle (should one exist) in the 3x+1 Problem, where a <= floor(log_2(2*(3^n) - 2^n)). The value n correlates to the number of odds in such a nontrivial cycle. See page 1288 of Crandall's paper. Also, this relation gives another proof that the number of odds divided by the number of evens in a nontrivial cycle is bounded by log 2 / log 3 (this observation does not resolve the finite cycles conjecture as the value could be arbitrarily close to this bound). However, the same argument gives that log 2 / log 3 is less than or equal to the number of odds divided by the number of evens in a divergent sequence (should one exist), as log 2 / log 3 is the limit value for a cycle of an arbitrarily large length, where the length is given by the value n. - Jeffrey R. Goodwin, Aug 04 2011
Row sums of Riordan triangle A106516. - Wolfdieter Lang, Jan 09 2015
Number of restricted barred preferential arrangements having 3 bars in which the sections are all restricted sections such that (for fixed sections i and j) section i or section j is empty. - Sithembele Nkonkobe, Oct 12 2015
This is also row 2 of A281891: for n >= 1, when consecutive positive integers are written as a product of primes in nondecreasing order, a factor of 2 or 3 occurs in n-th position a(n) times out of every 6^n. - Peter Munn, May 18 2017
Also row sums of A124929. - Omar E. Pol, Jun 15 2017
This is the sum of A318921(n) for n in the range 2^(k+1) to 2^(k+2)-1. See A318921 for proof. - N. J. A. Sloane, Sep 25 2018
a(n) is also the number of acyclic orientations of the complete bipartite graph K_{2,n}. - Vincent Pilaud, Sep 15 2020
a(n-1) is also the number of n-digit numbers whose largest decimal digit is 2. - Stefano Spezia, Nov 15 2023

References

  • Leonhard Euler, Introductio in analysin infinitorum (1748), section 216.

Crossrefs

Row n = 2 of array A099594.
Also occurs as a row, column, diagonal or as row sums in A038573, A085870, A090888, A106516, A217764, A281891.

Programs

  • Haskell
    a027649 n = a027649_list !! n
    a027649_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (1, 1)
    -- Reinhard Zumkeller, Jun 09 2013
    
  • Magma
    [2*(3^n)-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    a(n, k):= (-1)^n*sum( (-1)^'m'*'m'!*Stirling2(n,'m')/('m'+1)^k,'m'=0..n);
    seq(a(n, -2), n=0..30);
  • Mathematica
    Table[2(3^n)-2^n,{n,0,30}] (* or *) LinearRecurrence[ {5,-6},{1,4},31]  (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    a(n)=2*(3^n)-2^n \\ Charles R Greathouse IV, Jul 16 2011
    
  • PARI
    Vec((1-x)/((1-2*x)*(1-3*x)) + O(x^50)) \\ Altug Alkan, Oct 12 2015
    
  • SageMath
    [2*(3^n - 2^(n-1)) for n in (0..30)] # G. C. Greubel, Aug 01 2022

Formula

G.f.: (1-x)/((1-2*x)*(1-3*x)).
a(n) = 3*a(n-1) + 2^(n-1), with a(0) = 1.
a(n) = Sum_{k=0..n} binomial(n, k)*(2^(k+1) - 1). - Paul Barry, Mar 24 2003
Partial sums of A053581. - Paul Barry, Jun 26 2003
Main diagonal of array (A085870) defined by T(i, 1) = 2^i - 1, T(1, j) = 2^j - 1, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003
a(n) = A090888(n, 3). - Ross La Haye, Sep 21 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+1)*Sum_{j=0..floor(k/2)} A001045(k-2j). - Paul Barry, Apr 17 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n,j)*binomial(j+1,k+1). - Paul Barry, Sep 18 2006
a(n) = A166060(n+1)/6. - Philippe Deléham, Oct 21 2009
a(n) = 5*a(n-1) - 6*a(n-2), a(0)=1, a(1)=4. - Harvey P. Dale, Apr 22 2011
a(n) = A217764(n,2). - Ross La Haye, Mar 27 2013
For n>0, a(n) = 3 * a(n-1) + 2^(n-1) = 2 * (a(n-1) + 3^(n-1)). - J. Conrad, Oct 29 2015
for n>0, a(n) = 2 * (1 + 2^(n-2) + Sum_{x=1..n-2} Sum_{k=0..x-1} (binomial(x-1,k)*(2^(k+1) + 2^(n-x+k)))). - J. Conrad, Dec 10 2015
E.g.f.: exp(2*x)*(2*exp(x) - 1). - Stefano Spezia, May 18 2024

Extensions

Better formulas from David W. Wilson and Michael Somos
Incorrect formula removed by Charles R Greathouse IV, Mar 18 2010
Duplications (due to corrections to A numbers) removed by Peter Munn, Jun 15 2017

A038573 a(n) = 2^A000120(n) - 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 3, 7, 1, 3, 3, 7, 3, 7, 7, 15, 1, 3, 3, 7, 3, 7, 7, 15, 3, 7, 7, 15, 7, 15, 15, 31, 1, 3, 3, 7, 3, 7, 7, 15, 3, 7, 7, 15, 7, 15, 15, 31, 3, 7, 7, 15, 7, 15, 15, 31, 7, 15, 15, 31, 15, 31, 31, 63, 1, 3, 3, 7, 3, 7, 7, 15, 3, 7, 7, 15, 7, 15, 15, 31, 3, 7, 7, 15, 7, 15, 15, 31
Offset: 0

Views

Author

Keywords

Comments

Essentially the same sequence as A001316, which has much more information, and also A159913. - N. J. A. Sloane, Jun 05 2009
Smallest number with same number of 1's in its binary expansion as n.
Fixed point of the morphism 0 -> 01, 1 -> 13, 3 -> 37, ... = k -> k, 2k+1, ... starting from a(0) = 0; 1 -> 01 -> 0113 -> 01131337 -> 011313371337377(15) -> ..., . - Robert G. Wilson v, Jan 24 2006
From Gary W. Adamson, Jun 04 2009: (Start)
As an infinite string, 2^n terms per row starting with "1": (1; 1,3; 1,3,3,7; 1,3,3,7,3,7,7,15; 1,3,3,7,3,7,7,15,3,7,7,15,7,15,15,31;...)
Row sums of that triangle = A027649: (1, 4, 14, 46, 454, ...); where the next row sum = current term of A027649 + next term in finite difference row of A027649, i.e., (1, 3, 10, 32, 100, 308, ...) = A053581. (End)
From Omar E. Pol, Jan 24 2016: (Start)
Partial sums give A267700.
a(n) is also the number of cells turned ON at n-th generation of the cellular automaton of A267700 in a 90-degree sector on the square grid.
a(n) is also the number of Y-toothpicks added at n-th generation of the structure of A267700 in a 120-degree sector on the triangular grid. (End)
Row sums of A090971. - Nikolaos Pantelidis, Nov 23 2022

Examples

			9 = 1001 -> 0011 -> 3, so a(9)=3.
From _Gary W. Adamson_, Jun 04 2009: (Start)
Triangle read by rows:
  1;
  1, 3;
  1, 3, 3, 7;
  1, 3, 3, 7, 3, 7, 7, 15;
  1, 3, 3, 7, 3, 7, 7, 15, 3, 7, 7, 15, 7, 15, 15, 31;
  ...
Row sums: (1, 4, 14, 46, ...) = A027649 = last row terms + new set of terms such that row 3 = (1, 3, 3, 7,) + (3, 7, 7, 15) = 14 + 32 = A027649(2) + A053581(3). (End)
The rows of this triangle converge to A159913. - _N. J. A. Sloane_, Jun 05 2009
G.f. = x + x^2 + 3*x^3 + x^4 + 3*x^5 + 3*x^6 + 7*x^7 + x^8 + 3*x^9 + 3*x^10 + 7*x^11 + ... - _Michael Somos_, Jul 24 2023
		

Crossrefs

This is Guy Steele's sequence GS(3, 6) (see A135416).
Write n in b-ary, sort digits into increasing order: this sequence (b=2), A038574 (b=3), A319652 (b=4), A319653 (b=5), A319654 (b=6), A319655 (b=7), A319656 (b=8), A319657 (b=9), A004185 (b=10).
Column k=0 of A340666.

Programs

  • Haskell
    a038573 0 = 0
    a038573 n = (m + 1) * (a038573 n') + m where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Oct 10 2012, Feb 07 2011
    (Python 3.10+)
    def A038573(n): return (1<Chai Wah Wu, Nov 15 2022
  • Maple
    seq(2^convert(convert(n,base,2),`+`)-1, n=0..100); # Robert Israel, Jan 24 2016
  • Mathematica
    Array[ 2^Count[ IntegerDigits[ #, 2 ], 1 ]-1&, 100 ]
    Nest[ Flatten[ # /. a_Integer -> {a, 2a + 1}] &, {0}, 7] (* Robert G. Wilson v, Jan 24 2006 *)
  • PARI
    {a(n) = 2^subst(Pol(binary(n)), x, 1) - 1};
    
  • PARI
    a(n) = 2^hammingweight(n)-1; \\ Michel Marcus, Jan 24 2016
    

Formula

a(2n) = a(n), a(2n+1) = 2*a(n)+1, a(0) = 0. a(n) = A001316(n)-1 = 2^A000120(n) - 1. - Daniele Parisse
a(n) = number of positive integers k < n such that n XOR k = n-k (cf. A115378). - Paul D. Hanna, Jan 21 2006
a(n) = f(n, 1) with f(x, y) = if x = 0 then y - 1 else f(floor(x/2), y*(1 + x mod 2)). - Reinhard Zumkeller, Nov 21 2009
a(n) = (n mod 2 + 1) * a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Oct 10 2012
a(n) = Sum_{i=1..n} C(n,i) mod 2. - Wesley Ivan Hurt, Nov 17 2017
G.f.: -1/(1 - x) + Product_{k>=0} (1 + 2*x^(2^k)). - Ilya Gutkovskiy, Aug 20 2019
G.f. A(x) = x + x^2*A(x) + (1 + 2*x)*(1 - x^2)*A(x^2). - Michael Somos, Jul 24 2023

Extensions

More terms from Erich Friedman
New definition from N. J. A. Sloane, Mar 01 2008

A093833 3^n-Jacobsthal(n).

Original entry on oeis.org

1, 2, 8, 24, 76, 232, 708, 2144, 6476, 19512, 58708, 176464, 530076, 1591592, 4777508, 14337984, 43024876, 129096472, 387333108, 1162086704, 3486434876, 10459654152, 31379661508, 94140382624, 282423944076, 847277424632
Offset: 0

Views

Author

Paul Barry, Apr 17 2004

Keywords

Comments

Binomial transform of A052992. Binomial transform is A093834. Partial sums are A004054. Sums of consecutive pairs yield A053581.
Contribution from Johannes W. Meijer, Aug 15 2010: (Start)
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 343, 349, 373 and 469, lead to this sequence. For the central square these vectors lead to the companion sequence A175659.
(End)

Formula

G.f.: (1-x)^2/((1+x)(1-2x)(1-3x)); a(n)=3^n-2^n/3+(-1)^n/3; a(n)=3^n-A001045(n).

A385178 Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 7, 10, 14, 19, 15, 22, 32, 46, 65, 31, 46, 68, 100, 146, 211, 63, 94, 140, 208, 308, 454, 665, 127, 190, 284, 424, 632, 940, 1394, 2059, 255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305, 511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171
Offset: 0

Views

Author

Paul Curtz, Jun 20 2025

Keywords

Examples

			Triangle begins:
    0;
    1,   1;
    3,   4,    5;
    7,  10,   14,   19;
   15,  22,   32,   46,   65;
   31,  46,   68,  100,  146,  211;
   63,  94,  140,  208,  308,  454,  665;
  127, 190,  284,  424,  632,  940, 1394, 2059;
  255, 382,  572,  856, 1280, 1912, 2852, 4246,  6305;
  511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171;
  ...
		

Crossrefs

Columns k=0..2: A000225, A033484, A053209 (sans 1).
Diagonals: A001047, A027649, A053581 (sans 1), A291012 (sans 2).

Programs

  • Magma
    /* As triangle */ [[2^(n-k)*3^k - 2^k : k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jun 27 2025
  • Maple
    T:= proc(n,k) option remember;
         `if`(n=k, 3^n-2^n, T(n, k+1)-T(n-1, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    t[n_, 0] := 3^n - 2^n; t[n_, k_] := t[n, k] = t[n + 1, k - 1] - t[n, k - 1]; Table[t[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 20 2025 *)

Formula

T(n,n) = 3^n - 2^n = A001047(n).
T(n,k) = T(n,k+1) - T(n-1,k) for 0 <= k < n.
T(n,k) = 2^(n-k)*3^k - 2^k = A036561(n,k) - A059268(n,k).
T(2n,n) = A248216(n+1).
Showing 1-5 of 5 results.