cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A016813 a(n) = 4*n + 1.

Original entry on oeis.org

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 23 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 64 ).
Numbers k such that k and (k+1) have the same binary digital sum. - Benoit Cloitre, Jun 05 2002
Numbers k such that (1 + sqrt(k))/2 is an algebraic integer. - Alonso del Arte, Jun 04 2012
Numbers k such that 2 is the only prime p that satisfies the relationship p XOR k = p + k. - Brad Clardy, Jul 22 2012
This may also be interpreted as the array T(n,k) = A001844(n+k) + A008586(k) read by antidiagonals:
1, 9, 21, 37, 57, 81, ...
5, 17, 33, 53, 77, 105, ...
13, 29, 49, 73, 101, 133, ...
25, 45, 69, 97, 129, 165, ...
41, 65, 93, 125, 161, 201, ...
61, 89, 121, 157, 197, 241, ...
...
- R. J. Mathar, Jul 10 2013
With leading term 2 instead of 1, 1/a(n) is the largest tolerance of form 1/k, where k is a positive integer, so that the nearest integer to (n - 1/k)^2 and to (n + 1/k)^2 is n^2. In other words, if interval arithmetic is used to square [n - 1/k, n + 1/k], every value in the resulting interval of length 4n/k rounds to n^2 if and only if k >= a(n). - Rick L. Shepherd, Jan 20 2014
Odd numbers for which the number of prime factors congruent to 3 (mod 4) is even. - Daniel Forgues, Sep 20 2014
For the Collatz conjecture, we identify two types of odd numbers. This sequence contains all the descenders: where (3*a(n) + 1) / 2 is even and requires additional divisions by 2. See A004767 for the ascenders. - Fred Daniel Kline, Nov 29 2014 [corrected by Jaroslav Krizek, Jul 29 2016]
a(n-1), n >= 1, is also the complex dimension of the manifold M(S), the set of all conjugacy classes of irreducible representations of the fundamental group pi_1(X,x_0) of rank 2, where S = {a_1, ..., a_{n}, a_{n+1} = oo}, a subset of P^1 = C U {oo}, X = X(S) = P^1 \ S, and x_0 a base point in X. See the Iwasaki et al. reference, Proposition 2.1.4. p. 150. - Wolfdieter Lang, Apr 22 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-sunlet graph. - Eric W. Weisstein, Nov 29 2017
For integers k with absolute value in A047202, also exponents of the powers of k having the same unit digit of k in base 10. - Stefano Spezia, Feb 23 2021
Starting with a(1) = 5, numbers ending with 01 in base 2. - John Keith, May 09 2022

Examples

			From _Leo Tavares_, Jul 02 2021: (Start)
Illustration of initial terms:
                                        o
                        o               o
            o           o               o
    o     o o o     o o o o o     o o o o o o o
            o           o               o
                        o               o
                                        o
(End)
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 150.

Crossrefs

Subsequence of A042963 and of A079523.
a(n) = A093561(n+1, 1), (4, 1)-Pascal column.
Cf. A004772 (complement).
Cf. A017557.

Programs

Formula

a(n) = A005408(2*n).
Sum_{n>=0} (-1)^n/a(n) = (1/(4*sqrt(2)))*(Pi+2*log(sqrt(2)+1)) = A181048 [Jolley]. - Benoit Cloitre, Apr 05 2002 [corrected by Amiram Eldar, Jul 30 2023]
G.f.: (1+3*x)/(1-x)^2. - Paul Barry, Feb 27 2003 [corrected for offset 0 by Wolfdieter Lang, Oct 03 2014]
(1 + 5*x + 9*x^2 + 13*x^3 + ...) = (1 + 2*x + 3*x^2 + ...) / (1 - 3*x + 9*x^2 - 27*x^3 + ...). - Gary W. Adamson, Jul 03 2003
a(n) = A001969(n) + A000069(n). - Philippe Deléham, Feb 04 2004
a(n) = A004766(n-1). - R. J. Mathar, Oct 26 2008
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=5. a(n) = 4 + a(n-1). - Philippe Deléham, Nov 03 2008
A056753(a(n)) = 3. - Reinhard Zumkeller, Aug 23 2009
A179821(a(n)) = a(A179821(n)). - Reinhard Zumkeller, Jul 31 2010
a(n) = 8*n - 2 - a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 20 2010
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as a(n)^2 - A002943(n)*2^2 = 1. - Vincenzo Librandi, Mar 11 2009 - Nov 25 2012
A089911(6*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
a(n) = A004767(n) - 2. - Jean-Bernard François, Sep 27 2013
a(n) = A058281(3n+1). - Eli Jaffe, Jun 07 2016
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (1 + 4*x)*exp(x).
a(n) = Sum_{k = 0..n} A123932(k).
a(A005098(k)) = x^2 + y^2.
Inverse binomial transform of A014480. (End)
Dirichlet g.f.: 4*Zeta(-1 + s) + Zeta(s). - Stefano Spezia, Nov 02 2018

A019774 Decimal expansion of sqrt(e).

Original entry on oeis.org

1, 6, 4, 8, 7, 2, 1, 2, 7, 0, 7, 0, 0, 1, 2, 8, 1, 4, 6, 8, 4, 8, 6, 5, 0, 7, 8, 7, 8, 1, 4, 1, 6, 3, 5, 7, 1, 6, 5, 3, 7, 7, 6, 1, 0, 0, 7, 1, 0, 1, 4, 8, 0, 1, 1, 5, 7, 5, 0, 7, 9, 3, 1, 1, 6, 4, 0, 6, 6, 1, 0, 2, 1, 1, 9, 4, 2, 1, 5, 6, 0, 8, 6, 3, 2, 7, 7, 6, 5, 2, 0, 0, 5, 6, 3, 6, 6, 6, 4
Offset: 1

Views

Author

Keywords

Comments

Also where x^(x^(-2)) is a maximum. - Robert G. Wilson v, Oct 22 2014
e^(1/2) maximizes the value of x^(c/(x^2)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018

Examples

			1.6487212707001281468486507878141635716537761007101480115750...
		

Crossrefs

Cf. A000354, A001113, A058281 for continued fraction for sqrt(e), A019775.

Programs

  • Maple
    evalf(sqrt(exp(1)), 120); # Muniru A Asiru, Aug 16 2018
  • Mathematica
    RealDigits[N[Sqrt[E],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(exp(1)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019774.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009

Formula

sqrt(e) = Sum_{n>=0} 1/(2^n*n!) = Sum_{n>=0} 1/(2n)!!. - Daniel Forgues, Apr 17 2011
sqrt(e) = 1 + Sum_{n>0} Product_{i=1..n} 1/(2n). - Ralf Stephan, Sep 11 2013
Continued fraction representation: sqrt(e) = 1 + 1/(1 + 2/(3 + 4/(5 + ... ))). See A000354 for details. - Peter Bala, Jan 30 2015
sqrt(e) = (1/2)*( 1 + (3 + (5 + (7 + ...)/6)/4)/2 ) = 1 + (1 + (1 + (1 + ...)/6)/4)/2. - Rok Cestnik, Jan 19 2017
sqrt(e) = 2*Sum_{n >= 0} 1/((1 - 4*n^2)*(2^n)*n!). - Peter Bala, Jan 16 2022
sqrt(e) = (16/31)*(1 + Sum_{n>=1} (1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!). - Alexander R. Povolotsky, Jul 01 2022
sqrt(e) = Sum_{n >= 0} (n + 1/2)/(2^n*n!). - Peter Bala, Jun 29 2024
Equals i^(-i/Pi), where i denotes the imaginary unit. - Stefano Spezia, Mar 01 2025

A233584 Coefficients of the generalized continued fraction expansion sqrt(e) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 1, 1, 1, 5, 9, 17, 109, 260, 2909, 3072, 3310, 3678, 6715, 35175, 37269, 439792, 1400459, 1472451, 4643918, 5683171, 44850176, 62252861, 145631385, 154435765, 371056666, 1685980637, 11196453405, 14795372939
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.
Compared with simple continued fraction expansion for sqrt(e), this sequence starts soon growing very rapidly.

Crossrefs

Cf. A019774 (sqrt(e)), A058281 (simple continued fraction).
Cf. Blazys' expansions: A233582 (Pi), A233583, A233585, A233586, A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@E, 35] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(exp(1/2), 100) \\ Execution; use high real precision

Formula

sqrt(e) = 1+1/(1+1/(1+1/(1+1/(5+5/(9+9/(17+17/(109+...))))))).

A078688 Continued fraction expansion of e^(1/4).

Original entry on oeis.org

1, 3, 1, 1, 11, 1, 1, 19, 1, 1, 27, 1, 1, 35, 1, 1, 43, 1, 1, 51, 1, 1, 59, 1, 1, 67, 1, 1, 75, 1, 1, 83, 1, 1, 91, 1, 1, 99, 1, 1, 107, 1, 1, 115, 1, 1, 123, 1, 1, 131, 1, 1, 139, 1, 1, 147, 1, 1, 155, 1, 1, 163, 1, 1, 171, 1, 1, 179, 1, 1, 187
Offset: 0

Views

Author

Benoit Cloitre, Dec 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[E^(1/4),80] (* Harvey P. Dale, Nov 19 2011 *)

Formula

a(4k+2) = 8k+3, otherwise a(i) = 1.
G.f.: (6x^4+2x)/(1-x^3)^2+1/(1-x). - Ralf Stephan, Mar 13 2003

A078689 Continued fraction expansion of e^(1/3).

Original entry on oeis.org

1, 2, 1, 1, 8, 1, 1, 14, 1, 1, 20, 1, 1, 26, 1, 1, 32, 1, 1, 38, 1, 1, 44, 1, 1, 50, 1, 1, 56, 1, 1, 62, 1, 1, 68, 1, 1, 74, 1, 1, 80, 1, 1, 86, 1, 1, 92, 1, 1, 98, 1, 1, 104, 1, 1, 110, 1, 1, 116, 1, 1, 122, 1, 1, 128, 1, 1, 134, 1, 1, 140, 1, 1, 146
Offset: 0

Views

Author

Benoit Cloitre, Dec 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Exp[1/3], 100] (* Amiram Eldar, May 20 2022 *)

Formula

a(3k+1) = 6k+2, otherwise a(i) = 1.
G.f.: -(x^2-x+1)*(x^3-3*x^2-3*x-1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, Jun 24 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/18 + log(2)/6. - Amiram Eldar, May 04 2025

A078736 Numerators of convergents to sqrt(e).

Original entry on oeis.org

1, 2, 3, 5, 28, 33, 61, 582, 643, 1225, 16568, 17793, 34361, 601930, 636291, 1238221, 26638932, 27877153, 54516085, 1390779278, 1445295363, 2836074641, 83691459952, 86527534593, 170218994545, 5703754354578, 5873973349123
Offset: 1

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[E],30]] (* Harvey P. Dale, Sep 23 2011 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(exp(1/2),n)),1),1)

Formula

Let y(n, x)=sum(k=0, n, (n+k)!*(x/2)^k/((n-k)!*k!)) then : a(3*n)=(1/2)*(y(n, 4)+y(n-1, 4)); a(3*n+1)=y(n, 4); a(3*n+2)=(1/2)*(y(n+1, 4)-y(n, 4))

A078737 Denominators of convergents to sqrt(e).

Original entry on oeis.org

1, 1, 2, 3, 17, 20, 37, 353, 390, 743, 10049, 10792, 20841, 365089, 385930, 751019, 16157329, 16908348, 33065677, 843550273, 876615950, 1720166223, 50761436417, 52481602640, 103243039057, 3459501891521, 3562744930578, 7022246822099
Offset: 1

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n)=component(component(contfracpnqn(contfrac(exp(1/2),n)),1),2)

Formula

Let y(n, x)=sum(k=0, n, (n+k)!*(x/2)^k/((n-k)!*k!)) then : a(3*n-1)=(1/2)*(|y(n, -4)|- |y(n-1, -4)|); a(3*n)=(1/2)*(|y(n, -4)|+ |y(n-1, -4)|); a(3*n+1)=|y(n, -4)|

A267318 Continued fraction expansion of e^(1/5).

Original entry on oeis.org

1, 4, 1, 1, 14, 1, 1, 24, 1, 1, 34, 1, 1, 44, 1, 1, 54, 1, 1, 64, 1, 1, 74, 1, 1, 84, 1, 1, 94, 1, 1, 104, 1, 1, 114, 1, 1, 124, 1, 1, 134, 1, 1, 144, 1, 1, 154, 1, 1, 164, 1, 1, 174, 1, 1, 184, 1, 1, 194, 1, 1, 204, 1, 1, 214, 1, 1, 224, 1, 1, 234, 1, 1, 244, 1, 1, 254, 1, 1, 264, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

e^(1/5) is a transcendental number.
In general, the ordinary generating function for the continued fraction expansion of e^(1/k), with k = 1, 2, 3..., is (1 + (k - 1)*x + x^2 - (k + 1)*x^3 + 7*x^4 - x^5)/(1 - x^3)^2.

Examples

			e^(1/5) = 1 + 1/(4 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + 1/...))))).
		

Crossrefs

Cf. A092514.
Cf. continued fraction expansion of e^(1/k): A003417 (k=1), A058281 (k=2), A078689 (k=3), A078688 (k=4), this sequence (k=5).

Programs

  • Magma
    [1+(3+10*Floor(n/3))*(1-(n-1)^2 mod 3): n in [0..90]]; // Bruno Berselli, Feb 04 2016
  • Mathematica
    ContinuedFraction[Exp[1/5], 82]
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 4, 1, 1, 14, 1}, 82]
    CoefficientList[Series[(1 + 4 x + x^2 - x^3 + 6 x^4 - x^5) / (x^3 - 1)^2, {x, 0, 70}], x] (* Vincenzo Librandi, Jan 13 2016 *)
    Table[1 + (3 + 10 Floor[n/3]) (1 - Mod[(n - 1)^2, 3]), {n, 0, 90}] (* Bruno Berselli, Feb 04 2016 *)

Formula

G.f.: (1 + 4*x + x^2 - x^3 + 6*x^4 - x^5)/(1 - x^3)^2.
a(n) = 1 + (3 + 10*floor(n/3))*(1 - (n-1)^2 mod 3). [Bruno Berselli, Feb 04 2016]

Extensions

Edited by Bruno Berselli, Feb 04 2016

A316352 Decimal expansion of (BesselI(0,1/2)-BesselI(1,1/2))/(BesselI(0,1/2)-3*BesselI(1,1/2)).

Original entry on oeis.org

2, 7, 7, 9, 8, 0, 6, 0, 7, 9, 1, 5, 0, 3, 5, 6, 9, 1, 3, 9, 0, 2, 9, 6, 2, 1, 8, 4, 5, 5, 3, 1, 2, 0, 1, 4, 6, 7, 6, 0, 7, 3, 3, 6, 5, 5, 0, 9, 6, 0, 4, 4, 1, 9, 3, 3, 3, 3, 6, 6, 5, 5, 5, 2, 4, 3, 1, 2, 6, 9
Offset: 1

Views

Author

Terry D. Grant, Jun 29 2018

Keywords

Comments

The continued fraction of this number is the same as that of exp(1), except that a(3n) of the continued fraction of this number is the sequence of odd numbers, 2n+1, rather than the sequence of even numbers, 2n.

Examples

			2.77980607915035691390296218455... = 2 + 1/(1 + 1/(3 + 1/(1 + 1/(1 + 1/(5 + ...)))))
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 1/2] - BesselI[1, 1/2])/(BesselI[0, 1/2] - 3 BesselI[1, 1/2]), 10, 70][[1]]
  • PARI
    (besseli(0, 1/2)-besseli(1, 1/2))/(besseli(0, 1/2)-3*besseli(1, 1/2)) \\ Felix Fröhlich, Jul 07 2018
Showing 1-9 of 9 results.