cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A082505 a(n) = sum of (n-1)-th row terms of triangle A134059.

Original entry on oeis.org

0, 1, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Views

Author

Labos Elemer, Apr 28 2003

Keywords

Comments

a(n) is the least number x such that gcd(2^x, x-phi(x)) = 2^n. If cototient is replaced by totient, analogous values are different: A053576.

Examples

			G.f. = x + 6*x^2 + 12*x^3 + 24*x^4 + 48*x^5 + 96*x^6 + 192*x^7 + 384*x^8 + ...
		

Crossrefs

Essentially the same as A003945 (and perhaps also A058764).

Programs

  • Magma
    [0, 1] cat [ &+[ 3*Binomial(n,k): k in [0..n] ]: n in [1..30] ]; // Klaus Brockhaus, Dec 02 2009
    
  • Maple
    0,1,seq(3*2^(n-1), n=2..40); # G. C. Greubel, Apr 27 2021
  • Mathematica
    {0}~Join~Map[Total, {{1}}~Join~Table[3 Binomial[n, k], {n, 30}, {k, 0, n}]] (* Michael De Vlieger, Jul 03 2016, after Harvey P. Dale at A134059 *)
    Table[3*2^(n-1) -(3/2)*Boole[n==0] -2*Boole[n==1], {n,0,40}] (* G. C. Greubel, Apr 27 2021 *)
    Join[{0,1},NestList[2#&,6,30]] (* Harvey P. Dale, Jan 22 2024 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-6*k + 16) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • PARI
    a(n)=if(n<2,n,3<<(n-1)) \\ Charles R Greathouse IV, Jun 16 2012
    
  • Sage
    [0,1]+[3*2^(n-1) for n in (2..40)] # G. C. Greubel, Apr 27 2021

Formula

a(n) = A007283(n-1) for n>1, with a(0) = 0 and a(1) = 1.
G.f.: x * (1 + 4*x) / (1 - 2*x) = x / (1 - 6*x / (1 + 4*x)). - Michael Somos, Jun 15 2012
Starting (1, 6, 12, 24, 48, ...) = binomial transform of [1, 5, 1, 5, 1, 5, ...]. - Gary W. Adamson, Nov 18 2007
a(n+1) = Sum_{k=0..n} A109466(n,k)*A144706(k). - Philippe Deléham, Oct 30 2008
a(n) = (-6*n + 16) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
E.g.f.: (-3 - 4*x + 3*exp(2*x))/2. - Ilya Gutkovskiy, Jul 04 2016
a(n) = 3*2^(n-1) - (3/2)*[n=0] - 2*[n=1]. - G. C. Greubel, Apr 27 2021

Extensions

More terms from Klaus Brockhaus, Dec 02 2009

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

Original entry on oeis.org

6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A047233 Numbers that are congruent to {0, 4} mod 6.

Original entry on oeis.org

0, 4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 34, 36, 40, 42, 46, 48, 52, 54, 58, 60, 64, 66, 70, 72, 76, 78, 82, 84, 88, 90, 94, 96, 100, 102, 106, 108, 112, 114, 118, 120, 124, 126, 130, 132, 136, 138, 142, 144, 148, 150, 154, 156, 160, 162, 166, 168, 172, 174, 178, 180, 184, 186, 190, 192, 196, 198
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2*n cusp forms for Gamma_0(17).
Nonnegative k such that k*(k + 2)/6 is an integer. - Bruno Berselli, Mar 06 2018

Crossrefs

Cf. A047241: (6*n - (-1)^n - 5)/2.
Cf. A342819.

Programs

Formula

From Bruno Berselli, Jun 24 2010: (Start)
G.f.: 2*x^2*(2 + x)/((1 + x)*(1 - x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = (6*n + (-1)^n - 5)/2. (End)
a(n) = 6*n - a(n-1) - 8 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A058764(k+1). - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 13 2021
E.g.f.: 2 + ((6*x -5)*exp(x) + exp(-x))/2. - David Lovler, Aug 25 2022

A087009 Least m such that omega(m) + Omega(m) = n, or 0 if no such m exists.

Original entry on oeis.org

1, 0, 2, 4, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Views

Author

Lekraj Beedassy, Oct 13 2003

Keywords

Crossrefs

First occurrence of n in A080256.

Programs

  • Mathematica
    Join[{1, 0, 2, 4}, LinearRecurrence[{2}, {6}, 40]] (* Jean-François Alcover, Mar 07 2020 *)
  • PARI
    a(n) = {m = 1; while (omega(m) + bigomega(m) != n, m++); m} \\ Michel Marcus, Oct 23 2013

Formula

For n > 3, a(n) = 2^(n-3)*3. - Ray Chandler, Nov 01 2003
a(n) = A058764(n-2). - Philippe Deléham, Oct 17 2011
G.f.: (2*x^4-2*x^2+2*x-1)/(2*x-1). - Colin Barker, Oct 23 2012

Extensions

Corrected and extended by Ray Chandler, Nov 01 2003

A152764 Bisection of A138144.

Original entry on oeis.org

1, 111, 11011, 1100011, 110000011, 11000000011, 1100000000011, 110000000000011, 11000000000000011, 1100000000000000011, 110000000000000000011, 11000000000000000000011
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Examples

			n ...... a(n)
1 ....... 1
2 ...... 111
3 ..... 11011
4 .... 1100011
5 ... 110000011
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{101,-100},{1,111,11011,1100011},20] (* Harvey P. Dale, Nov 26 2019 *)
  • PARI
    Vec(-x*(10*x-1)*(10*x+1)^2/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

From Colin Barker, Sep 16 2013: (Start)
a(n) = 11+11*10^(2*n-3) for n>2.
a(n) = 101*a(n-1)-100*a(n-2) for n>4.
G.f.: -x*(10*x-1)*(10*x+1)^2 / ((x-1)*(100*x-1)). (End)

A053578 Values of cototient function for A053577.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 1, 8, 1, 8, 8, 1, 1, 1, 16, 16, 1, 1, 16, 1, 1, 1, 1, 32, 1, 32, 1, 1, 32, 32, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 64, 1, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 128, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jan 18 2000

Keywords

Comments

Except for 2^0 = 1, there are only finitely many values of k such that cototient(k) = 2^m for fixed m.

Examples

			For p prime, cototient(p) = 1. Smallest values for which cototient(x) = 2^w are A058764(w) = A007283(w-1) = 3*2^(w-1) = 6, 12, 24, 48, 96, 192, .., 49152 for w = 2, 3, 4, 5, 6, ..., 15. [Corrected by _M. F. Hasler_, Nov 10 2016]
		

Crossrefs

Programs

  • Mathematica
    Select[Table[k - EulerPhi[k], {k, 1, 400}], # == 2^IntegerExponent[#, 2] &] (* Amiram Eldar, Jun 09 2024 *)
  • PARI
    lista(kmax) = {my(c); for(k = 2, kmax, c = k - eulerphi(k); if(c >> valuation(c, 2) == 1, print1(c, ", ")));} \\ Amiram Eldar, Jun 09 2024

Extensions

Edited and corrected by M. F. Hasler, Nov 10 2016

A114958 a(n) = 6*2^(n+1) - 5*(n+1) - 4.

Original entry on oeis.org

3, 10, 29, 72, 163, 350, 729, 1492, 3023, 6090, 12229, 24512, 49083, 98230, 196529, 393132, 786343, 1572770, 3145629, 6291352, 12582803, 25165710, 50331529, 100663172, 201326463, 402653050, 805306229, 1610612592, 3221225323
Offset: 0

Views

Author

Creighton Dement, Feb 21 2006

Keywords

Crossrefs

Programs

  • Magma
    [6*2^(n+1) - 5*(n+1) - 4: n in [0..30] ]; // Vincenzo Librandi, May 18 2011
    
  • PARI
    Vec((3 - 2*x + 4*x^2) / ((1 - x)^2*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Apr 30 2019

Formula

From Colin Barker, Apr 30 2019: (Start)
G.f.: (3 - 2*x + 4*x^2) / ((1 - x)^2*(1 - 2*x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>2.
(End)

A072073 Number of solutions to cototient(x) = A051953(x) = 2^n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
Offset: 1

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Comments

a(n) increases at A000043(n).
Since A051953(p) = 1 for p prime, and given that there are an infinite number of primes, we disregard a(0) = oo. - Michael De Vlieger, Mar 25 2020

Examples

			InvCototient(2^0) has an infinite number of entries, so 2^0=1 is left out.
n=14: 2^14=16384, InvCototient(16384) = {24576,28672,31744,32512,32764,32768}, so a(14)=6;
		

Crossrefs

Programs

  • Mathematica
    Length /@ Most@ Split@ DeleteCases[Select[Array[# - EulerPhi[#] &, 10^6], IntegerQ@ Log2@ # &], 1] (* Michael De Vlieger, Mar 25 2020 *)

Formula

a(n) = A063740(A000079(n)). - Ridouane Oudra, Jun 02 2024
Showing 1-8 of 8 results.