cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A164652 Triangle read by rows: Hultman numbers: a(n,k) is the number of permutations of n elements whose cycle graph (as defined by Bafna and Pevzner) contains k cycles for n >= 0 and 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 8, 0, 15, 0, 1, 0, 84, 0, 35, 0, 1, 180, 0, 469, 0, 70, 0, 1, 0, 3044, 0, 1869, 0, 126, 0, 1, 8064, 0, 26060, 0, 5985, 0, 210, 0, 1, 0, 193248, 0, 152900, 0, 16401, 0, 330, 0, 1, 604800, 0, 2286636, 0, 696905, 0, 39963, 0, 495, 0, 1, 0, 19056960, 0, 18128396, 0, 2641925, 0, 88803, 0, 715, 0, 1
Offset: 0

Views

Author

Anthony Labarre, Aug 19 2009

Keywords

Comments

a(n,k) is also the number of ways to express a given (n+1)-cycle as the product of an (n+1)-cycle and a permutation with k cycles (see Doignon and Labarre). a(n,n+1-2k) is the number of permutations of n elements whose block-interchange distance is k (see Christie, Doignon and Labarre).
Named after the Swedish mathematician Axel Hultman. - Amiram Eldar, Jun 11 2021
a(2*n,1) is the number of spanning trees in certain graphs with 2*n+1 vertices and n*(n+1) edges (see Ishikawa, Miezaki, and Tanaka). - Tsuyoshi Miezaki, Feb 08 2023

Examples

			Triangle begins:
  n=0:  1;
  n=1:  0, 1;
  n=2:  1, 0, 1;
  n=3:  0, 5, 0, 1;
  n=4:  8, 0, 15, 0, 1;
  n=5:  0, 84, 0, 35, 0, 1;
  n=6:  180, 0, 469, 0, 70, 0, 1;
  n=7:  0, 3044, 0, 1869, 0, 126, 0, 1;
  n=8:  8064, 0, 26060, 0, 5985, 0, 210, 0, 1;
  n=9:  0, 193248, 0, 152900, 0, 16401, 0, 330, 0, 1;
  n=10: 604800, 0, 2286636, 0, 696905, 0, 39963, 0, 495, 0, 1;
  ...
From _Jon E. Schoenfield_, May 20 2023: (Start)
As a right-aligned triangle:
                                                      1; n=0
                                                   0, 1; n=1
                                                1, 0, 1; n=2
                                           0,   5, 0, 1; n=3
                                        8, 0,  15, 0, 1; n=4
                                 0,    84, 0,  35, 0, 1; n=5
                            180, 0,   469, 0,  70, 0, 1; n=6
                      0,   3044, 0,  1869, 0, 126, 0, 1; n=7
                8064, 0,  26060, 0,  5985, 0, 210, 0, 1; n=8
          0,  193248, 0, 152900, 0, 16401, 0, 330, 0, 1; n=9
  604800, 0, 2286636, 0, 696905, 0, 39963, 0, 495, 0, 1; n=10
  ...
(End)
		

References

  • Axel Hultman, Toric permutations, Master's thesis, Department of Mathematics, KTH, Stockholm, Sweden, 1999.

Crossrefs

Cf. A185263 (rows reversed without 0's).

Programs

  • Haskell
    a164652 n k = a164652_tabl !! n !! k
    a164652_row n = a164652_tabl !! n
    a164652_tabl = [0] : tail (zipWith (zipWith (*)) a128174_tabl $
       zipWith (map . flip div) (tail a000217_list) (map init $ tail a130534_tabl))
    -- Reinhard Zumkeller, Aug 01 2014
    
  • Maple
    A164652:= (n, k)-> `if`(n-k mod 2 = 1, -Stirling1(n+2, k)/binomial(n+2, 2), 0):
    for n from 0 to 7 do seq(A164652(n,k),k=1..n+1) od; # Peter Luschny, Mar 22 2015
  • Mathematica
    T[n_, k_] := If[OddQ[n-k], Abs[StirlingS1[n+2, k]]/Binomial[n+2, 2], 0];
    Table[T[n, k], {n, 0, 11}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    T(n,k)= my(s=(n-k)%2); (-1)^s*s*stirling(n+2,k,1)/binomial(n+2,2);
    concat(vector(12, n, vector(n, k, T(n-1,k)))) \\ Gheorghe Coserea, Jan 23 2018
  • Sage
    def A164652(n, k):
        return stirling_number1(n+2,k)/binomial(n+2,2) if is_odd(n-k) else 0
    for n in (0..7): print([A164652(n,k) for k in (1..n+1)]) # Peter Luschny, Mar 22 2015
    

Formula

T(n,k) = S1(n+2,k)/C(n+2,2) if n-k is odd, and 0 otherwise. Here S1(n,k) are the unsigned Stirling numbers of the first kind A132393 and C(n,k) is the binomial coefficient (see Bona and Flynn).
For n > 0: T(n,k) = A128174(n+1,k) * A130534(n+1,k-1) / A000217(n+1). - Reinhard Zumkeller, Aug 01 2014
n-th row polynomial R(n,x) = (x/2)*( P(n+1,x) + (-1)^n * P(n+1,-x) ) / binomial(n+2,2), where P(k,x) = (x + 1)*(x + 2)*...*(x + k). - Peter Bala, May 14 2023

Extensions

T(0,1) set to 1 by Peter Luschny, Mar 24 2015
Edited to match values of k to the range 1 to n+1. - Max Alekseyev, Nov 20 2020

A090586 Denominator of Sum/Product of first n numbers.

Original entry on oeis.org

1, 2, 1, 12, 8, 240, 180, 1120, 8064, 725760, 604800, 79833600, 68428800, 830269440, 10897286400, 2615348736000, 2324754432000, 711374856192000, 640237370572800, 11585247657984000, 221172909834240000, 102181884343418880000, 93666727314800640000
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2003

Keywords

Comments

a(n) = A000142(n)/A069268(n);
a(p-1) = 2*A000142(p-2) for odd primes.
a(n) = A060593((n - 1)/2) for odd n. - Gregory Gerard Wojnar, Jun 10 2021

Crossrefs

Cf. A090585 (numerator), A060593.
Main diagonal of A093420.

Programs

  • Magma
    [Denominator(n + 1) / (2*Factorial(n - 1)): n in [1..30]]; // Vincenzo Librandi, Oct 15 2018
  • Maple
    seq(denom((n+1)/(2*(n-1)!)),n=1..25); # Robert Israel, Oct 14 2018
  • Mathematica
    Table[Denominator[(n + 1) / (2 (n - 1)!)], {n, 25}] (* Vincenzo Librandi, Oct 15 2018 *)

A177267 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having genus k (see first comment for definition of genus).

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 14, 10, 0, 0, 42, 70, 8, 0, 0, 132, 420, 168, 0, 0, 0, 429, 2310, 2121, 180, 0, 0, 0, 1430, 12012, 20790, 6088, 0, 0, 0, 0, 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0, 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0, 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, 0, 0, 0, 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0
Offset: 1

Views

Author

Emeric Deutsch, May 27 2010

Keywords

Comments

The genus g(p) of a permutation p of {1,2,...,n} is defined by g(p)=(1/2)[n+1-z(p)-z(cp')], where p' is the inverse permutation of p, c = 234...n1 = (1,2,...,n), and z(q) is the number of cycles of the permutation q.
The sum of the entries in row n is n!.
The number of nonzero entries in row n is floor((n+1)/2).
T(n,0) = A000108(n) (the Catalan numbers).
Apparently T(n,1) = A002802(n-3).
Last nonzero terms in rows with odd n appear to be A060593. [Joerg Arndt, Nov 01 2012.]

Examples

			T(3,1)=1 because 312 is the only permutation of {1,2,3} with genus 1 (we have p=312=(132), cp'=231*231=312=(132) and so g(p)=(1/2)(3+1-1-1)=1).
Triangle starts:
[ 1]  1,
[ 2]  2, 0,
[ 3]  5, 1, 0,
[ 4]  14, 10, 0, 0,
[ 5]  42, 70, 8, 0, 0,
[ 6]  132, 420, 168, 0, 0, 0,
[ 7]  429, 2310, 2121, 180, 0, 0, 0,
[ 8]  1430, 12012, 20790, 6088, 0, 0, 0, 0,
[ 9]  4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0,
[10]  16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0,
[11]  58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, ...,
[12]  208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0, ...,
[13]  742900, 29745716, 368588220, 1700309468, 2788065280, 1271140416, 68428800, 0, ...,
...
		

References

  • S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.

Crossrefs

Cf. A178514 (genus of derangements), A178515 (genus of involutions), A178516 (genus of up-down permutations), A178517 (genus of non-derangement permutations), A178518 (permutations of [n] having genus 0 and p(1)=k), A185209 (genus of connected permutations), A218538 (genus of permutations avoiding [x,x+1]).
Row sums give A000142.
T(2n+1,n) gives A060593.

Programs

  • Maple
    n := 8: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: f[n] := sort(add(t^gen(P[j]), j = 1 .. factorial(n))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries in the specified row n
    # second Maple program:
    b:= proc(n) option remember; `if`(n<2, 1, ((4*n-2)*
          b(n-1)+(n-2)*(n-1)^2*expand(x*b(n-2)))/(n+1))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n, k), k=0..n-1), n=1..12);  # Alois P. Heinz, Feb 16 2024
  • Mathematica
    T[ n_, k_] := If[ n < 1 || k >= n, 0, Module[{pn = Table[i, {i, n}]}, Do[ pn[[i]] = ((4 i - 2) pn[[i - 1]] + x (i - 2) (i - 1)^2 pn[[i - 2]])/(i + 1) // Expand, {i, 3, n}]; Coefficient[pn[[n]], x, k]]]; (* Michael Somos, Sep 02 2017 *)

Formula

Let p(n, x) := g.f. of row n. Then (n+1) * p(n, x) = (4*n-2) * p(n-1, x) + x * (n-2) * (n-1)^2 * p(n-2, x). - Michael Somos, Sep 02 2017

Extensions

Terms for rows 12 and 13 from Joerg Arndt, Jan 24 2011.

A321710 Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.

Original entry on oeis.org

1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1

Views

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Comments

Row n contains floor((n+1)/2) = A008619(n-1) terms.

Examples

			Triangle starts:
n\k  [0]       [1]        [2]         [3]         [4]        [5]
[1]  1;
[2]  3;
[3]  12,       1;
[4]  56,       15;
[5]  288,      165,       8;
[6]  1584,     1611,      252;
[7]  9152,     14805,     4956,       180;
[8]  54912,    131307,    77992,      9132;
[9]  339456,   1138261,   1074564,    268980,     8064;
[10] 2149888,  9713835,   13545216,   6010220,    579744;
[11] 13891584, 81968469,  160174960,  112868844,  23235300,  604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
		

Crossrefs

Columns k=0..9 give: A000257 (k=0), A118093 (k=1), A214817 (k=2), A214818 (k=3), A318104 (k=4), A321705 (k=5), A321706 (k=6), A321707 (k=7), A321708 (k=8), A321709 (k=9).
Row sums give A003319(n+1).

Programs

  • Mathematica
    l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
    m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
    ff[1] = x^2 t[1];
    ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
    row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
    Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
  • PARI
    L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
    M1(f, N) = {
      sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
          j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
    };
    F(N) = {
      my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
      f[1] = u*v*t[1];
      for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
        sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
        j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
        f[n] /= n);
      f;
    };
    seq(N) = {
      my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
         g=vector(#v, n, Polrev(Vec(n * v[n]))));
      apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
    };
    concat(seq(14))

Formula

A000257(n)=T(n,0), A118093(n)=T(n,1), A214817(n)=T(n,2), A214818(n)=T(n,3), A060593(n)=T(2*n+1,n)=(2*n)!/(n+1), A003319(n+1)=Sum_{k=0..floor((n-1)/2)} T(n,k).

A268438 Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](n/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 8, 6, 0, 180, 240, 90, 0, 8064, 14560, 10080, 2520, 0, 604800, 1330560, 1285200, 604800, 113400, 0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400, 0, 10897286400, 30858347520, 43770767040, 36970053120, 18918900000, 5448643200, 681080400
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

The P-transform is defined in the link. Compare also the Sage and Maple implementations below.

Examples

			Triangle starts:
[1],
[0, 1],
[0, 8,        6],
[0, 180,      240,       90],
[0, 8064,     14560,     10080,     2520],
[0, 604800,   1330560,   1285200,   604800,    113400],
[0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400].
		

Crossrefs

Programs

  • Maple
    A268438 := proc(n,k) local F,T;
      F := proc(n,k) option remember;
      `if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
      F(n-1,k)*(n+k))) end;
      T := proc(n, k) option remember;
      `if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
      (4*n-2)*n*(n+k-1)*(T(n-1,k)+T(n-1,k-1)))) end:
    T(n,k)/F(n,k) end:
    for n from 0 to 6 do seq(A268438(n,k), k=0..n) od;
    # Alternatively, with the function PTrans defined in A269941:
    A268438_row := n -> PTrans(n, n->n/(n+1),(n,k)->(-1)^k*(2*n)!):
    seq(lprint(A268438_row(n)), n=0..8);
  • Mathematica
    T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] Abs[StirlingS1[n+m, m]], {m, 0, k}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
  • Sage
    A268438 = lambda n,k: (factorial(2*n)/falling_factorial(n+k,n))*sum((-1)^(m+k)* binomial(n+k,n+m)*stirling_number1(n+m,m) for m in (0..k))
    for n in (0..7): print([A268438(n,m) for m in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n))

Formula

T(n,k) = ((2*n)!/FF(n+k,n))*Sum_{m=0..k}(-1)^(m+k)*C(n+k,n+m)*Stirling1(n+m,m) where FF denotes the falling factorial function.
T(n,k) = ((2*n)!/FF(n+k,n))*A269940(n,k).
T(n,1) = (2*n)!/(n+1) = A060593(n) for n>=1.
T(n,n) = (2*n)!/2^n = A000680(n) for n>=0.

A329070 Array read by ascending antidiagonals: T(n, k) = (k*n)!/(k^n*(1/k)_n) with (n >= 0 and k >= 1), where (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 6, 1, 1, 48, 180, 24, 1, 1, 384, 12960, 8064, 120, 1, 1, 3840, 1710720, 10644480, 604800, 720, 1, 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1, 1, 645120, 109930867200, 244635697152000, 2303884477440000, 70355755008000, 10897286400, 40320, 1
Offset: 0

Views

Author

Petros Hadjicostas, Nov 03 2019

Keywords

Comments

For information about the function W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)) (mentioned in the Formula section below), see Theorem 3.2 in Elizalde and Noy (2003) with u = 0 and m and a in the theorem equal to our m + 1. See also the documentation of array A327722.
By using the ratio test and the Stirling approximation to the gamma function, we may show that the radius of convergence of the power series for W_m(z) is infinity (for each m >= 0). Thus, the function W_m(z) (as defined by the above power series) is entire.
If we define S(m,s) = T(n-s, s+1) for m >= 0 and 0 <= s <= m, we get the triangular array that appears in the Example section below.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
  1,  1,     1,        1,           1,              1,  ...
  1,  2,     6,       24,         120,            720,  ...
  1,  8,   180,     8064,      604800,       68428800, ...
  1, 48, 12960, 10644480, 19813248000, 70355755008000, ...
  ...
Triangular array S(m,s) = T(m-s, s+1) (with rows m >= 0 and columns s >= 0):
  1;
  1,     1;
  1,     2,         1;
  1,     8,         6,           1;
  1,    48,       180,          24,           1;
  1,   384,     12960,        8064,         120,        1;
  1,  3840,   1710720,    10644480,      604800,      720,    1;
  1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1;
  ...
		

Crossrefs

Rows include A000012 (n = 0), A000142 (n = 1), A060593 (n = 2).
Columns include A000012 (k = 1), A000165 (k = 2), A176730 (k = 3).
Ratios T(n+1,k)/(k!*T(n,k)) include A000012 (k = 1), A000027 (k = 2), A000326 (k = 3), A100157 (k = 4), A234043 (k = 5).

Programs

  • Maple
    A := (n, k) -> `if`(k=0, 1, (GAMMA(1/k)*GAMMA(k*n+1))/(GAMMA(n+1/k)*k^n)):
    seq(seq(A(n-k-1, k), k=1..n-1), n=0..10); # Peter Luschny, Nov 04 2019

Formula

T(0,k) = 1, T(1,k) = k!, and T(2,k) = (2*k)!/(k + 1) for k >= 1.
T(n,1) = 1, T(n,2) = (2*n)!!, and T(n,3) is related to the Airy functions (see the documentation of A176730).
T(n+1,k) = (k-1)! * binomial(k*(n+1), k-1) * T(n,k) for n >= 0 and k >= 1.
T(n+1,k)/(k! * T(n,k)) = Cat(n+1, k), where Cat(d, k) = binomial(k*d, k)/(k * (d - 1) + 1) is a Fuss-Catalan number; see Theorem 1.2 in Schuetz and Whieldon (2014).
If F(k,z) = Sum_{n >= 0} z^(k*n)/T(n,k), then F(k,z) satisfies the o.d.e. F^(k-1)(k,z) - z*F(k,z) = 0.
If W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)), then 1/W_m(z) is the e.g.f. of row m of A327722(m,n), which counts permutations of [n] that avoid the consecutive pattern 12...(m+1)(m+3)(m+2) (or equivalently, the consecutive pattern (m+3)(m+2)...(3)(1)(2)).
The function W_m(z) satisfies the o.d.e. W_m^(m+2)(z) + z*W_m'(z) = 0 with W_m(0) = 1, W_m'(0) = -1, and W_m^(s)(0) = 0 for s = 2..(m + 1).

A185263 Triangle T(n,k) read by rows: coefficients (in compressed forms) in order of decreasing exponents of polynomials p_n(t) related to Hultman numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 15, 8, 1, 35, 84, 1, 70, 469, 180, 1, 126, 1869, 3044, 1, 210, 5985, 26060, 8064, 1, 330, 16401, 152900, 193248, 1, 495, 39963, 696905, 2286636, 604800, 1, 715, 88803, 2641925, 18128396, 19056960, 1, 1001, 183183, 8691683, 109425316, 292271616, 68428800, 1, 1365, 355355, 25537655, 539651112, 2961802480, 2699672832
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

Comments

Row n contains floor(n/2) + 1 terms.

Examples

			Triangle begins:
  n\k| 0    1      2       3         4         5        6
-----+---------------------------------------------------
   0 | 1
   1 | 1
   2 | 1    1
   3 | 1    5
   4 | 1   15      8
   5 | 1   35     84
   6 | 1   70    469     180
   7 | 1  126   1869    3044
   8 | 1  210   5985   26060      8064
   9 | 1  330  16401  152900    193248
  10 | 1  495  39963  696905   2286636    604800
  11 | 1  715  88803 2641925  18128396  19056960
  12 | 1 1001 183183 8691683 109425316 292271616 68428800
  ...
Polynomials p_n(t):
  p_0 = t;
  p_1 = t^2;
  p_2 = t^3 +     t;
  p_3 = t^4 +   5*t^2;
  p_4 = t^5 +  15*t^3 +    8*t;
  p_5 = t^6 +  35*t^4 +   84*t^2;
  p_6 = t^7 +  70*t^5 +  469*t^3 +  180*t;
  p_7 = t^8 + 126*t^6 + 1869*t^4 + 3044*t^2;
  ...
A(x;t) = t + t^2*x/1! + (t^3 + t)*x^2/2! + (t^4 + 5*t^2)*x^3/3! + ...
		

Crossrefs

For uncompressed form of polynomial coefficients, in order of increasing powers, see A164652.

Programs

  • Mathematica
    T[n_, k_] := Abs[StirlingS1[n+2, n-2k+1]]/Binomial[n+2, 2];
    Table[T[n, k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    seq(N) = {
      my(p=vector(N), t='t, v); p[1] = t^2; p[2] = t^3 + t;
      for (n=3, N,
        p[n] = ((2*n+1)*t*p[n-1] + (n-1)*(n^2-t^2)*p[n-2])/(n+2));
      v = vector(#p, n, vector(1+n\2, k, polcoeff(p[n], n+1-2*(k-1))));
      concat([[1]], v);
    };
    concat(seq(13))
    
  • PARI
    N=14; x='x+O('x^(N+1));
    concat(apply(p->select(a->a!=0, Vec(p)), Vec(serlaplace(((1-x)^(-t) - (1+x)^t)/x^2))))
    
  • PARI
    T(n,k) = -stirling(n+2, n+1-2*k, 1)/binomial(n+2,2);
    concat(1, concat(vector(13, n, vector(1+n\2, k, T(n, k-1)))))
    \\ Gheorghe Coserea, Jan 29 2018

Formula

From Gheorghe Coserea, Jan 29 2018: (Start)
p(n) = Sum_{k=0..floor(n/2)} T(n,k)*t^(n+1-2*k) satisfies (n+2)*p(n) = (2*n+1)*t*p(n-1) + (n-1)*(n^2-t^2)*p(n-2), n >= 2. (th. 3, (iii))
E.g.f. A(x;t) = Sum_{n>=0} p(n)*x^n/n! = ((1-x)^(-t) - (1+x)^t)/x^2. (th. 3, (i))
T(n,k) = -Stirling1(n+2, n+1-2*k)/binomial(n+2,2), where Stirling1(n,k) is defined by A048994.
A000142(n) = p(n)(1), A052572(n) = p(n)(2) for n > 0, A060593(n) = T(2*n, n) for n > 0. (End)
n-th row polynomial R(n,x) satisfies x*R(n,x^2) = (1/2)*( P(n+1,x) - P(n+1,-x) )/ binomial(n+2,2), where P(k,x) = (1 + x)*(1 + 2*x) * ... *(1 + k*x). - Peter Bala, May 14 2023

Extensions

More terms from Gheorghe Coserea, Jan 29 2018

A064335 a(n) = 6*(2*n)!/(n+2).

Original entry on oeis.org

3, 4, 36, 864, 40320, 3110400, 359251200, 58118860800, 12553673932800, 3492203839488000, 1216451004088320000, 518769566666588160000, 265906457885674045440000, 161316584450642254233600000
Offset: 0

Views

Author

Karol A. Penson, Sep 13 2001

Keywords

Comments

All terms, except a(0) and a(1), are integer multiples of 6.

Crossrefs

Cf. A060593.

Programs

  • GAP
    List([0..20], n-> 6*Factorial(2*n)/(n+2)); # G. C. Greubel, May 03 2019
  • Magma
    [6*Factorial(2*n)/(n+2): n in [0..20]]; // G. C. Greubel, May 03 2019
    
  • Mathematica
    Table[6*(2*n)!/(n+2), {n,0,20}] (* G. C. Greubel, May 03 2019 *)
  • PARI
    { s=6; for (n=0, 100, if (n, s*=2*n*(2*n - 1)); a=s/(n + 2); write("b064335.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 12 2009
    
  • PARI
    a(n) = 6*(2*n)!/(n+2); \\ Michel Marcus, Jun 24 2018
    
  • Sage
    [6*factorial(2*n)/(n+2) for n in (0..20)] # G. C. Greubel, May 03 2019
    

Formula

a(n) = Integral_{x=0..oo} (x^n*(exp(-sqrt(x)) * (-1+sqrt(x)+2/sqrt(x)) + x*Ei(-sqrt(x))) ), n=0, 1..., where Ei(y) is the exponential integral. Representation as the n-th moment of a positive function on a positive half-axis, in Maple notation. This representation is unique.

A322544 a(n) is the reciprocal of the coefficient of x^n in the power series defined by ((1+2x)*exp(x) + 3*exp(-x) - 4)/ (4x^2).

Original entry on oeis.org

1, 6, 8, 60, 180, 1680, 8064, 90720, 604800, 7983360, 68428800, 1037836800, 10897286400, 186810624000, 2324754432000, 44460928512000, 640237370572800, 13516122267648000, 221172909834240000, 5109094217170944000, 93666727314800640000, 2350183339898634240000, 47726800133326110720000
Offset: 0

Views

Author

Pierre-Alain Sallard, Dec 14 2018

Keywords

Crossrefs

Cf. A060593 (even bisection, shifted), A028242 (denominator minus 1), A030451 (denominator, shifted), A107991 (Expansion of a similar function), A073743.

Programs

  • GAP
    List([0..25],n->(4*Factorial(n+2))/(2*n+5+3*(-1)^n)); # Muniru A Asiru, Dec 20 2018
  • Maple
    a:=n->factorial(n+2)/(3*floor(n/2)-n+2): seq(a(n),n=0..25); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    Table[4*Factorial[n + 2]/(2*n + 5 + 3*(-1)^n), {n, 0, 25}]
    (* or *)
    Function[x, 1/x] /@
    CoefficientList[Series[(Exp[x]/4 + 3/4*Exp[-x] + x/2*Exp[x] - 1)/x^2, {x, 0, 20}], x]
  • PARI
    a(n)={(4*(n+2)!)/(5 + 3*(-1)^n + 2*n)} \\ Andrew Howroyd, Dec 14 2018
    
  • PARI
    my(x='x + O('x^30)); Vec(apply(x->1/x, ((1+2*x)*exp(x) + 3*exp(-x) - 4)/ (4*x^2))) \\ Michel Marcus, Dec 19 2018
    

Formula

a(n) = (n+2)!/(3*floor(n/2)-n+2).
a(n) = (4*(n+2)!)/(2n+5+3*(-1)^n).
a(n) = 4/([x^n]((exp(x)*(1+2x)+3*exp(-x)-4)/x^2)).
a(n) = (n+2)!/(A028242(n)+1).
a(n) = (n+2)!/A030451(n+1).
a(n) ~ sqrt(Pi/2)/72*exp(-n)*n^(n-1/2)*(1705 - 264*n + 288*n^2). - Stefano Spezia, Aug 11 2025
Sum_{n>=0} 1/a(n) = 3*cosh(1)/2 - 1. - Amiram Eldar, Aug 15 2025

A371665 T(n,k) is the number of reduced unicellular hypermonopoles on n points with k hyperedges, where T(n,k), 1 <= k <= floor(n/2), is an array read by rows.

Original entry on oeis.org

1, 0, 1, 8, 0, 0, 36, 0, 180, 0, 49, 0, 1604, 0, 21, 8064, 0, 5144, 0, 0, 112608, 0, 7680, 0, 604800, 0, 604428, 0, 5445, 0, 11799360, 0, 1669052, 0, 1485, 68428800, 0, 91705536, 0, 2610608, 0, 0, 1741669632, 0, 384036016, 0, 2342340, 0, 10897286400, 0, 18071744976, 0, 972895560, 0, 1126125
Offset: 3

Views

Author

Gabor Hetyei, Apr 02 2024

Keywords

Comments

T(n,k) is zero unless k <= n/2. (proven to be correct)

Examples

			The table begins:
         1;
         0,          1;
         8,          0;
         0,         36,        0;
       180,          0,       49;
         0,       1604,        0,        21;
      8064,          0,     5144,         0;
         0,     112608,        0,      7680,       0;
    604800,          0,   604428,         0,    5445;
         0,   11799360,        0,   1669052,       0,    1485;
  68428800,          0, 91705536,         0, 2610608,       0;
         0, 1741669632,        0, 384036016,       0, 2342340, 0;
		

Crossrefs

Programs

  • Maple
    proc(n, k)
        local i;
        coeff(expand(add(combinat:-binomial(n, i)*(-x)^i*(pochhammer(x, n - i + 1) - pochhammer(x - n + i, n - i + 1))/((n - i)*(n - i + 1)), i = 0 .. n - 1)), x, k);
    end proc

Formula

T(n,k) = Sum_{i=0..k-1} (-1)^i binomial(n,i)*a(n-1-i,k-i) where the a(n,k) are the Hultman numbers from A164652.
T(2*m+1,1) = (2*m)! / (m+1) = A060593(m) for m >= 1.
Showing 1-10 of 11 results. Next