cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A145923 Second bisection of A061041: a(n) = A061041(2n+1) = (2*n+1)*(2*n+9).

Original entry on oeis.org

9, 33, 65, 105, 153, 209, 273, 345, 425, 513, 609, 713, 825, 945, 1073, 1209, 1353, 1505, 1665, 1833, 2009, 2193, 2385, 2585, 2793, 3009, 3233, 3465, 3705, 3953, 4209, 4473, 4745, 5025, 5313, 5609, 5913, 6225, 6545, 6873, 7209, 7553, 7905, 8265, 8633, 9009, 9393
Offset: 0

Views

Author

Paul Curtz, Oct 25 2008

Keywords

Crossrefs

Cf. A061041.

Programs

Formula

a(n) = (2*n+1)*(2*n+9).
G.f.: (9 + 6*x - 7*x^2)/(1-x)^3 . - R. J. Mathar, Oct 23 2016
E.g.f.: (9 + 24*x + 4*x^2)*exp(x). - G. C. Greubel, Mar 23 2024

Extensions

More terms from Jinyuan Wang, Mar 23 2020

A158650 Indices of single-digit numbers in A061041.

Original entry on oeis.org

4, 5, 6, 8, 12, 20, 28, 36
Offset: 1

Views

Author

Paul Curtz, Mar 23 2009

Keywords

Comments

The single-digit numbers are 0,9,5,3,1,3,3,5, to be compared with A158270.
From formula A061041(n) = (n^2-16) / gcd(n-4,16)^2, this list is complete. - Franklin T. Adams-Watters, Sep 25 2011.

Crossrefs

Cf. A061041.

Formula

{k: A061041(k)<10}.

Extensions

Edited and extended by R. J. Mathar, Apr 04 2009

A064038 Numerator of average number of swaps needed to bubble sort a string of n distinct letters.

Original entry on oeis.org

0, 1, 3, 3, 5, 15, 21, 14, 18, 45, 55, 33, 39, 91, 105, 60, 68, 153, 171, 95, 105, 231, 253, 138, 150, 325, 351, 189, 203, 435, 465, 248, 264, 561, 595, 315, 333, 703, 741, 390, 410, 861, 903, 473, 495, 1035, 1081, 564, 588, 1225, 1275, 663, 689, 1431, 1485, 770
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2001

Keywords

Comments

Denominators are given by the simple periodic sequence [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, ...] (= A014695) thus we get an average of 1/2, 3/2, 3, 5, 15/2, 21/2, 14, 18, etc. swappings required to bubble sort a string of 2, 3, 4, 5, 6, ... letters.

References

  • E. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.

Crossrefs

Programs

  • Magma
    [Numerator(n*(n-1)/4): n in [1..100]]; // G. C. Greubel, Sep 21 2018
  • Maple
    [seq(numer((n*(n-1))/4), n=1..120)];
  • Mathematica
    f[n_] := Numerator[n (n - 1)/4]; Array[f, 56]
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# - 1] &, 56]
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1},{0,1,3,3,5,15,21,14,18},80] (* Harvey P. Dale, Jan 23 2023 *)
  • PARI
    vector(100, n, numerator(n*(n-1)/4)) \\ G. C. Greubel, Sep 21 2018
    

Formula

a(n) = numerator(A001809(n)/(n!)).
a(4n) = A033991(n).
a(4n+1) = A007742(n).
a(4n+2) = A014634(n).
a(4n+3) = A033567(n+1).
a(n+1) = A061041(8*n-4). - Paul Curtz, Jan 03 2011
G.f.: -x^2*(1+4*x^3+x^6) / ( (x-1)^3*(1+x^2)^3 ). - R. J. Mathar, Jan 03 2011
a(n+1) = A060819(n)*A060819(n+1).
a(n+1) = A000217(n)/(period 4:repeat 2,1,1,2=A014695(n+2)=A130658(n+3)).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12). - Paul Curtz, Mar 04 2011
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +1*a(n-9). - Joerg Arndt, Mar 04 2011
a(n+1) = A026741(A000217(n)). - Paul Curtz, Apr 04 2011
a(n) = numerator(Sum_{k=0..n-1} k/2). - Arkadiusz Wesolowski, Aug 09 2012
a(n) = n*(n-1)*(3-i^(n*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Oct 01 2012, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 4 - Pi/2. - Amiram Eldar, Aug 09 2022
E.g.f.: x^2*(3*exp(x) + cos(x) + sin(x))/8. - Stefano Spezia, Aug 23 2025

A033567 a(n) = (2*n-1)*(4*n-1).

Original entry on oeis.org

1, 3, 21, 55, 105, 171, 253, 351, 465, 595, 741, 903, 1081, 1275, 1485, 1711, 1953, 2211, 2485, 2775, 3081, 3403, 3741, 4095, 4465, 4851, 5253, 5671, 6105, 6555, 7021, 7503, 8001, 8515, 9045, 9591, 10153, 10731, 11325, 11935, 12561, 13203, 13861, 14535, 15225
Offset: 0

Views

Author

Keywords

Comments

a(n+1) = A005563(1), A061037(3), A061039(5), A061041(7), A061043(9), A061045(11), A061047(13), A061049(15). Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, ... spectra of hydrogen. - Paul Curtz, Oct 08 2008
Sequence found by reading the segment [1, 3] together with the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Crossrefs

Programs

  • Magma
    [(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
  • Mathematica
    Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *)
    LinearRecurrence[{3,-3,1},{1,3,21},50] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
    

Formula

a(n) = a(n-1) + 16*n - 14 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 06 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2).
E.g.f.: (1 + 2*x + 8*x^2)*exp(x).
G.f.: (1 + 15*x^2)/(1 - x)^3. (End)
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + Pi/4 - log(2)/2.
Sum_{n>=0} (-1)^n/a(n) = 1 + (sqrt(2)-1)*Pi/4 + log(sqrt(2)-1)/sqrt(2). (End)

Extensions

More terms from Michel Marcus, Apr 12 2015

A144437 Period 3: repeat [3, 3, 1].

Original entry on oeis.org

3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 05 2008

Keywords

Comments

The sequence is generated from numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...
Conjecture: a(n) is the separatix. See A045944.
Also the decimal expansion of the constant 3310/999. - R. J. Mathar, May 21 2009
Continued fraction expansion of A171417.
Greatest common divisor of (n+1)^2-1 and (n+1)^2+2. - Bruno Berselli, Mar 08 2017

Crossrefs

Numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...

Programs

Formula

a(n) = (7-4*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
G.f.: x*(3 + 3*x + x^2)/((1 - x)*(1 + x + x^2)). - R. J. Mathar, May 21 2009
a(n) = 3/gcd(n,3). - Reinhard Zumkeller, Oct 30 2009
a(n) = denominator(n^k/3), where k>0 is an integer. - Enrique Pérez Herrero, Oct 05 2011
a(n) = gcd(T(n+1), T(2)) = A256095(n+1, 2), with the triangular numbers T = A000217, for n >= 1. - Wolfdieter Lang, Mar 17 2015
a(n) = a(n-3) for n>3; a(n) = A169609(n) for n>0. - Wesley Ivan Hurt, Jul 02 2016
E.g.f.: (1/3)*(7*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2) - 3). - G. C. Greubel, Aug 24 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 9/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A069705. (End)

Extensions

Edited by R. J. Mathar, May 21 2009

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A061042 Denominator of 1/16 - 1/n^2.

Original entry on oeis.org

1, 400, 144, 784, 64, 1296, 400, 1936, 18, 2704, 784, 3600, 256, 4624, 1296, 5776, 50, 7056, 1936, 8464, 576, 10000, 2704, 11664, 49, 13456, 3600, 15376, 1024, 17424, 4624, 19600, 81, 21904, 5776, 24336, 1600, 26896, 7056, 29584
Offset: 4

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

See A061041 for comments, references, links.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061042 n = denominator (1%16 - 1%n^2)  -- Reinhard Zumkeller, May 30 2012
    
  • Mathematica
    Denominator/@(1/16-1/Range[4,50]^2) (* Harvey P. Dale, May 14 2011 *)
  • PARI
    a(n)=denominator(1/16 - 1/n^2) \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = 16*n^2 / gcd(16*n^2, n^2-16). - Colin Barker, Jan 13 2014

A168077 a(2n) = A129194(2n)/2; a(2n+1) = A129194(2n+1).

Original entry on oeis.org

0, 1, 1, 9, 4, 25, 9, 49, 16, 81, 25, 121, 36, 169, 49, 225, 64, 289, 81, 361, 100, 441, 121, 529, 144, 625, 169, 729, 196, 841, 225, 961, 256, 1089, 289, 1225, 324, 1369, 361, 1521, 400, 1681, 441, 1849, 484, 2025, 529, 2209, 576, 2401, 625, 2601
Offset: 0

Views

Author

Paul Curtz, Nov 18 2009

Keywords

Comments

From Paul Curtz, Mar 26 2011: (Start)
Successive A026741(n) * A026741(n+p):
p=0: 0, 1, 1, 9, 4, 25, 9, a(n),
p=1: 0, 1, 3, 6, 10, 15, 21, A000217,
p=2: 0, 3, 2, 15, 6, 35, 12, A142705,
p=3: 0, 2, 5, 9, 14, 20, 27, A000096,
p=4: 0, 5, 3, 21, 8, 45, 15, A171621,
p=5: 0, 3, 7, 12, 18, 25, 33, A055998,
p=6: 0, 7, 4, 27, 10, 55, 18,
p=7: 0, 4, 9, 15, 22, 30, 39, A055999,
p=8: 0, 9, 5, 33, 12, 65, 21, (see A061041),
p=9: 0, 5, 11, 18, 26, 35, 45, A056000. (End)
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (-4 * log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
Multiplicative because both A129194 and A040001 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Magma
    I:=[0,1,1,9,4,25]; [n le 6 select I[n] else 3*Self(n-2)-3*Self(n-4)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 10 2016
    
  • Maple
    a := proc(n): n^2*(5-3*(-1)^n)/8 end: seq(a(n), n=0..46); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,1,9,4,25},60] (* Harvey P. Dale, May 14 2011 *)
    f[n_] := Numerator[(n/2)^2]; Array[f, 60, 0] (* Robert G. Wilson v, Dec 18 2012 *)
    CoefficientList[Series[x(1+x+6x^2+x^3+x^4)/((1-x)^3(1+x)^3), {x,0,60}], x] (* Vincenzo Librandi, Jul 10 2016 *)
  • PARI
    concat(0, Vec(x*(1+x+6*x^2+x^3+x^4)/((1-x)^3*(1+x)^3) + O(x^60))) \\ Altug Alkan, Jul 04 2016
    
  • PARI
    a(n) = lcm(4, n^2)/4; \\ Andrew Howroyd, Jul 26 2018
    
  • Sage
    (x*(1+x+6*x^2+x^3+x^4)/(1-x^2)^3).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 20 2019

Formula

From R. J. Mathar, Jan 22 2011: (Start)
G.f.: x*(1 + x + 6*x^2 + x^3 + x^4) / ((1-x)^3*(1+x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
a(n) = n^2*(5 - 3*(-1)^n)/8. (End)
a(n) = A026741(n)^2.
a(2*n) = A000290(n); a(2*n+1) = A016754(n).
a(n) - a(n-4) = 4*A064680(n+2). - Paul Curtz, Mar 27 2011
4*a(n) = A061038(n) * A010121(n+2) = A109043(n)^2, n >= 2. - Paul Curtz, Apr 07 2011
a(n) = A129194(n) / A040001(n). - Andrew Howroyd, Jul 26 2018
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 4)) = n^2/(gcd(n^2,4)) = (n/gcd(n,2))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 4, ...] is a purely periodic sequence of period 2. Thus a(n) is a quasi-polynomial in n.
O.g.f.: x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3.
Cf. A181318. (End)
From Werner Schulte, Aug 30 2020: (Start)
Multiplicative with a(2^e) = 2^(2*e-2) for e > 0, and a(p^e) = p^(2*e) for prime p > 2.
Dirichlet g.f.: zeta(s-2) * (1 - 3/2^s).
Dirichlet convolution with A259346 equals A000290.
Sum_{n>0} 1/a(n) = Pi^2 * 7 / 24. (End)
Sum_{k=1..n} a(k) ~ (5/24) * n^3. - Amiram Eldar, Nov 28 2022

A144433 Multiples of 8 interleaved with the sequence of odd numbers >= 3.

Original entry on oeis.org

8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59, 240, 61, 248, 63, 256, 65, 264
Offset: 1

Views

Author

Paul Curtz, Oct 04 2008

Keywords

Comments

For n >= 2, these are the numerators of 1/n^2 - 1/(n+1)^2: A061037(4), A061039(5), A061041(6), A061043(7), A061045(8), A061047(9), A061049(10), etc.

Crossrefs

Cf. A120070.

Programs

Formula

a(2*n+1) = A008590(n+1), a(2*n) = A005408(n).
a(2*n+1) + a(2*n+2) = A017281(n+1).
From R. J. Mathar, Apr 01 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: x*(8+3*x-x^3)/((1-x)^2*(1+x)^2). (End)
a(n) = (n + 1) * 4^(n mod 2). - Wesley Ivan Hurt, Nov 27 2013

Extensions

Edited by R. J. Mathar, Apr 01 2009

A172157 Triangle T(n,m) = numerator of 1/n^2 - 1/m^2, read by rows, with T(n,0) = -1.

Original entry on oeis.org

-1, -1, -3, -1, -8, -5, -1, -15, -3, -7, -1, -24, -21, -16, -9, -1, -35, -2, -1, -5, -11, -1, -48, -45, -40, -33, -24, -13, -1, -63, -15, -55, -3, -39, -7, -15, -1, -80, -77, -8, -65, -56, -5, -32, -17, -1, -99, -6, -91, -21, -3, -4, -51, -9, -19, -1, -120, -117, -112
Offset: 1

Views

Author

Paul Curtz, Jan 27 2010

Keywords

Comments

The triangle obtained by negating the values of the triangle A120072 and adding a row T(n,0) = -1.

Examples

			The full array of numerators starts in row n=1 with columns m>=0 as:
-1...0...3...8..15..24..35..48..63..80..99. A005563
-1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262
-1..-8..-5...0...7..16...1..40..55...8..91. A061039
-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
		

Crossrefs

Programs

  • Mathematica
    T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)
Showing 1-10 of 22 results. Next