cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A264886 Integers n such that A061720(n-1) + 1 or A061720(n-1) - 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 15, 25, 36, 57, 80, 81, 133, 225, 281, 282, 288, 343, 632, 653
Offset: 1

Views

Author

Altug Alkan, Nov 27 2015

Keywords

Comments

Integers n such that A002110(n) - A002110(n-1) + 1 or A002110(n) - A002110(n-1) - 1 is prime.
Are there any other squares in sequence?

Examples

			a(3) = 3 because 2*3*5 - 2*3 - 1 = 23 is prime.
a(6) = 8 because 2*3*5*7*11*13*17*19 - 2*3*5*7*11*13*17 + 1 = 9189181 is prime.
		

Crossrefs

Programs

  • Mathematica
    t = Differences[FoldList[Times, 1, Prime@ Range@ 1200]]; Select[Range@ 360, Or[PrimeQ[t[[# - 1]] + 1], PrimeQ[t[[# - 1]] - 1]] &] - 1 (* Michael De Vlieger, Nov 28 2015, after Alonso del Arte at A061720 *)
  • PARI
    a(n) = prod(k=1, n, prime(k));
    for(n=0, 1e3, if(ispseudoprime(a(n)-a(n-1)-1) || ispseudoprime(a(n)-a(n-1)+1), print1(n, ", ")))

A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Keywords

Comments

See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023

Examples

			a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
  • D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.

Crossrefs

A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Haskell
    a002110 n = product $ take n a000040_list
    a002110_list = scanl (*) 1 a000040_list
    -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
    
  • Magma
    [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
    
  • Magma
    [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
    
  • Maple
    A002110 := n -> mul(ithprime(i),i=1..n);
  • Mathematica
    FoldList[Times, 1, Prime[Range[20]]]
    primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
    Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
    
  • PARI
    p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) )  \\ Harry J. Smith, Nov 13 2009
    
  • PARI
    a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
    
  • Python
    from sympy import primorial
    def a(n): return 1 if n < 1 else primorial(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Mar 29 2017
    
  • Sage
    [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scheme
    ; with memoization-macro definec
    (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016

Formula

Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024

A235224 a(0) = 0, and for n > 0, a(n) = largest k such that A002110(k-1) <= n, where A002110(k) gives the k-th primorial number.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 05 2014

Keywords

Comments

For n > 0: a(n) = (length of row n in A235168) = A055642(A049345(n)).
For n > 0, a(n) gives the length of primorial base expansion of n. Also, after zero, each value n occurs A061720(n-1) times. - Antti Karttunen, Oct 19 2019

Crossrefs

Programs

  • Haskell
    a235224 n = length $ takeWhile (<= n) a002110_list
    
  • Maple
    A235224 := proc(n)
        local k;
        if n = 0 then
            0;
        else
            for k from 0 do
                if A002110(k-1) > n then
                    return k-1 ;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Apr 19 2021
  • Mathematica
    primorial[n_] := Times @@ Prime[Range[n]];
    a[n_] := TakeWhile[primorial /@ Range[0, n], # <= n &] // Length;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 27 2021 *)
  • PARI
    A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Oct 19 2019
    
  • PARI
    A235224(n, p=2) = if(!n,n,if(nA235224(n\p, nextprime(p+1)))); \\ (Recursive implementation) - Antti Karttunen, Oct 19 2019

Formula

From Antti Karttunen, Oct 19 2019: (Start)
a(n) = A061395(A276086(n)).
For all n >= 0, a(n) >= A267263(n).
For all n >= 1, A000040(a(n)) > A328114(n). (End)

Extensions

Name corrected to match the data by Antti Karttunen, Oct 19 2019

A276154 a(n) = Shift primorial base representation (A049345) of n left by one digit (append one zero to the right, then convert back to decimal).

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 30, 32, 36, 38, 42, 44, 60, 62, 66, 68, 72, 74, 90, 92, 96, 98, 102, 104, 120, 122, 126, 128, 132, 134, 210, 212, 216, 218, 222, 224, 240, 242, 246, 248, 252, 254, 270, 272, 276, 278, 282, 284, 300, 302, 306, 308, 312, 314, 330, 332, 336, 338, 342, 344, 420, 422, 426, 428, 432, 434, 450, 452, 456, 458, 462, 464, 480, 482, 486, 488
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Examples

			   n   A049345  with one zero           converted back
                appended to the right   to decimal = a(n)
---------------------------------------------------------
   0       0            00                     0
   1       1            10                     2
   2      10           100                     6
   3      11           110                     8
   4      20           200                    12
   5      21           210                    14
   6     100          1000                    30
   7     101          1010                    32
   8     110          1100                    36
   9     111          1110                    38
  10     120          1200                    42
  11     121          1210                    44
  12     200          2000                    60
  13     201          2010                    62
  14     210          2100                    66
  15     211          2110                    68
  16     220          2200                    72
		

Crossrefs

Complement: A276155.
Cf. A002110, A003961, A049345, A276085, A276086, A276151, A276152, A286629 [= a(A061720(n-1))], A324384 [= gcd(n, a(n))], A323879, A328770 (a subsequence).
Cf. also A276156, A328461, A328464.
Dispersion array and its transpose: A276943, A276945, with primorials divided out: A286623, A286625.
Analogous to A153880.

Programs

  • Mathematica
    nn = 75; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[#] <= nn &]]; Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, 75}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276154(n) = A276085(A003961(A276086(n))); \\ Antti Karttunen, Mar 15 2021
    
  • PARI
    A276151(n) = { my(s=1); forprime(p=2, , if(n%p, return(n-s), s *= p)); };
    A276152(n) = { my(s=1); forprime(p=2, , if(n%p, return(s*p), s *= p)); };
    A276154(n) = if(!n,n,(A276152(n) + A276154(A276151(n)))); \\ Antti Karttunen, Mar 15 2021
    
  • Scheme
    (definec (A276154 n) (if (zero? n) n (+ (A276152 n) (A276154 (A276151 n)))))

Formula

a(0) = 0; for n >= 1, a(n) = A276152(n) + a(A276151(n)).
a(n) = A276085(A003961(A276086(n))). - Antti Karttunen, Mar 15 2021

A276155 Complement of A276154; numbers that cannot be obtained by shifting left the primorial base representation (A049345) of some number.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

The first 25 terms, when viewed in primorial base (A049345) look as: 1, 11, 20, 21, 101, 111, 120, 121, 201, 211, 220, 221, 300, 301, 310, 311, 320, 321, 400, 401, 410, 411, 420, 421, 1001.

Crossrefs

Complement: A276154.
Row 1 of A276943 and A286623. Column 1 of A276945 and A286625.
Cf. A005408, A057588, A061720, A143293, A286630 (subsequences).
For the first 17 terms coincides with A273670.

Programs

  • Mathematica
    nn = 109; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Complement[Range@ nn, Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}]] (* Version 10.2, or *)
    nn = 109; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Complement[Range@ nn, Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, nn}]] (* Michael De Vlieger, Aug 26 2016 *)

A351067 Number of integers between the n-th and the (n+1)-th primorial such that the maximal exponent in their prime factorization is larger than the maximal digit in their primorial base expansion.

Original entry on oeis.org

0, 3, 11, 52, 291, 1681, 11506, 89347
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2022

Keywords

Comments

a(n) is the number of terms of A350075 in range A002110(n) .. A002110(1+n)-1.
The ratio a(n) / A061720(n) develops as:
n = 1: 0 / 4 = 0
2: 3 / 24 = 0.125
3: 11 / 180 = 0.061111...
4: 52 / 2100 = 0.247619...
5: 291 / 27720 = 0.010498...
6: 1681 / 480480 = 0.003499...
7: 11506 / 9189180 = 0.001252...
8: 89347 / 213393180 = 0.000419...

Examples

			Between A002110(2) = 6 and A002110(3) = 30, there are exactly three numbers that satisfy the condition: 8, 9, 16, therefore a(2) = 3.
		

Crossrefs

Cf. also A327969.

Programs

Formula

a(n) = Sum_{k=A002110(n) .. A002110(1+n)-1} [A328114(k) < A051903(k)], where [ ] is the Iverson bracket.
For all n, a(n) < A351069(n).

A351071 Number of integers x in range A002110(n) .. A002110(1+n)-1 such that the k-th arithmetic derivative of A276086(x) is zero for some k, where A002110(n) is the n-th primorial.

Original entry on oeis.org

1, 4, 8, 44, 216, 1474, 11130, 92489
Offset: 0

Views

Author

Antti Karttunen, Feb 02 2022

Keywords

Comments

a(n) is the number of terms of A328116 in range A002110(n) .. A002110(1+n)-1.
a(n) is the number of terms in A351255 (and in A099308) whose largest prime factor (A006530) is A000040(1+n).
Ratio a(n) / A061720(n) develops as:
0: 1 / 1 = 1.0
1: 4 / 4 = 1.0
2: 8 / 24 = 0.333...
3: 44 / 180 = 0.244...
4: 216 / 2100 = 0.1029...
5: 1474 / 27720 = 0.05317...
6: 11130 / 480480 = 0.02316...
7: 92489 / 9189180 = 0.01006...
Computing term a(8) would need processing over 213393180 integers whose greatest prime factor is 23, from single A351255(105368) = 23 at start to product (2^1)*(3^2)*(5*4)*(7^6)*(11^10)*(13^12)*(17^16)*(19^18)*(23^22) at the end of the batch [number whose size in binary is 346 bits], and would required factoring integers of comparable size and more (see A351261), that might not all be easily factorable.

Examples

			There are eight terms [6, 7, 9, 12, 15, 20, 21, 28] that are >= A002110(2) and < A002110(3) in A328116 for which the corresponding terms [5, 10, 30, 25, 150, 375, 750, 5625] in A276086 (and A351255) are all in A099308, therefore a(2) = 8.
		

Crossrefs

Programs

  • PARI
    \\ Memoization would work quite badly here. (See comments in A351255. In practice sequence A328306 was computed first, up to its term a(9699690). Same data is available in A328116.)
    A002110(n) = prod(i=1,n,prime(i));
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328306(n) = A328308(A276086(n));
    A351071(n) = sum(k=A002110(n),A002110(1+n)-1,A328306(k));

Formula

a(n) = Sum_{k=A002110(n) .. A002110(1+n)-1} A328306(k).
a(n) = A328307(A002110(1+n)) - A328307(A002110(n)).

A286629 a(n) = (A000040(n)-1) * A002110(n).

Original entry on oeis.org

2, 12, 120, 1260, 23100, 360360, 8168160, 174594420, 4908043140, 181151410440, 6016814703900, 267146572853160, 12170010541088400, 549475975930141260, 28284929999070604860, 1694636240813882325960, 111520100308944333066060, 7037302881564418258996200, 518649222371297625688019940, 39055858108868927267719077300
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n] - 1) Product[Prime[k], {k, n}], {n, 100}] (* Indranil Ghosh, Jul 07 2017 *)
  • PARI
    a(n) = (prime(n)-1)*prod(k=1, n, prime(k)); \\ Michel Marcus, Jul 07 2017
  • Python
    from sympy import prime, primorial
    def a002110(n): return 1 if n<1 else primorial(n)
    def a(n): return (prime(n) - 1)*a002110(n)
    print([a(n) for n in range(1, 21)]) # Indranil Ghosh, Jul 07 2017
    
  • Scheme
    (define (A286629 n) (* (- (A000040 n) 1) (A002110 n)))
    

Formula

a(n) = A006093(n) * A002110(n) = (A000040(n)-1) * A002110(n).
a(n) = A286630(n) - A002110(n).
a(n) = A276154(A061720(n-1)).

A328402 Number of terms of A048103 found in range A002110(n-1) .. A002110(n)-1.

Original entry on oeis.org

1, 3, 17, 130, 1517, 20013, 346902, 6634497, 154067794
Offset: 1

Views

Author

Antti Karttunen, Oct 17 2019

Keywords

Comments

Number of integers from A002110(n-1) to A002110(n)-1 that are in range of A276086.
a(n) is the total number of times n occurs in A328404.

Crossrefs

Programs

Formula

a(n) <= A061720(n-1) for all n >= 1.
Showing 1-9 of 9 results.