A356233 Number of integer factorizations of n into gapless numbers (A066311).
1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 5, 1, 4, 1, 2, 1, 1, 1, 7, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 2, 9, 1, 1, 1, 3, 1, 2, 1, 2, 4, 1, 1, 12, 2, 2, 1, 2, 1, 7, 1, 3, 1, 1, 1, 8, 1, 1, 2, 11, 1, 2, 1, 2, 1, 2, 1, 16, 1, 1, 4, 2, 2, 2, 1, 5, 5, 1, 1, 4, 1, 1
Offset: 1
Keywords
Examples
The counted factorizations of n = 2, 4, 8, 12, 24, 36, 48: (2) (4) (8) (12) (24) (36) (48) (2*2) (2*4) (2*6) (3*8) (4*9) (6*8) (2*2*2) (3*4) (4*6) (6*6) (2*24) (2*2*3) (2*12) (2*18) (3*16) (2*2*6) (3*12) (4*12) (2*3*4) (2*2*9) (2*3*8) (2*2*2*3) (2*3*6) (2*4*6) (3*3*4) (3*4*4) (2*2*3*3) (2*2*12) (2*2*2*6) (2*2*3*4) (2*2*2*2*3)
Crossrefs
A000005 counts divisors.
A001055 counts factorizations.
A003963 multiplies together the prime indices.
A356226 lists the lengths of maximal gapless submultisets of prime indices:
- length: A287170
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; sqq[n_]:=Max@@Differences[primeMS[n]]<=1; Table[Length[Select[facs[n],And@@sqq/@#&]],{n,100}]
Comments