A006139 n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.
1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, 1116928, 5149696, 23835904, 110690816, 515483648, 2406449152, 11258054144, 52767312896, 247736643584, 1164829376512, 5484233814016, 25852072517632, 121997903495168
Offset: 0
Examples
G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 136*x^4 + 592*x^5 + 2624*x^6 + 11776*x^7 + ... J_3 = Integral_{y=0..Pi/4} 4*(4*(sin(y)-cos(y))*sin(y))^3*dy = 32*Pi - (304/3), |J_3| < 1. - _Bradley Klee_, Jul 19 2018
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 377.
- Dario Castellanos, A generalization of Binet's formula and some of its consequences, Fib. Quart., 27 (1989), 424-438.
- Maciej Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
- Shalosh B. Ekhad and Doron Zeilberger, Searching for Apéry-Style Miracles [Using, Inter-Alia, the Amazing Almkvist-Zeilberger Algorithm], arXiv:1405.4445 [math.NT], 2014.
- Bradley Klee, Approximating Pi with Trigonometric-Polynomial Integrals, Wolfram Demonstrations, July 27, 2018.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Crossrefs
Programs
-
GAP
a:=[1,2];; for n in [3..25] do a[n]:=1/(n-1)*(2*(2*n-3)*a[n-1]+4*(n-2)*a[n-2]); od; a; # Muniru A Asiru, Aug 06 2018
-
Maple
seq(add(binomial(2*k, k)*binomial(k, n-k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001 A006139 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2): seq(simplify(A006139(n)), n=0..29); # Peter Luschny, Sep 18 2014
-
Mathematica
Table[SeriesCoefficient[1/(1-4x-4x^2)^(1/2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 05 2012 *) Table[Abs[LegendreP[n, I]] 2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *) Table[Sum[Binomial[2*k, k]*Binomial[k, n - k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *) a[n_] := If[n == 0, 1, Coefficient[(1 + 2 x + 2 x^2)^n, x^n]] (* Emanuele Munarini, Aug 04 2017 *) CoefficientList[Series[1/Sqrt[(-4 x^2 - 4 x + 1)], {x, 0, 24}], x] (* Robert G. Wilson v, Jul 28 2018 *)
-
Maxima
a(n) := coeff(expand((1+2*x+2*x^2)^n),x,n); makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 04 2017 */
-
PARI
for(n=0,30,t=polcoeff((1+2*x+2*x^2)^n,n,x); print1(t","))
-
PARI
for(n=0,25, print1(sum(k=0,n, binomial(2*k,k)*binomial(k,n-k)), ", ")) \\ G. C. Greubel, Feb 28 2017
-
PARI
{a(n) = (-2*I)^n * pollegendre(n, I)}; /* Michael Somos, Aug 04 2018 */
Formula
a(n) = Sum_{k=0..n} C(2*k, k)*C(k, n-k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
G.f.: 1/(1-4x-4x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+2x^2)^n. - Paul D. Hanna, Jun 01 2003
Inverse binomial transform of central Delannoy numbers A001850. - David Callan, Mar 14 2004
E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} C(n,2k) * C(2k,k) * 2^(n-k). - Paul Barry, Sep 19 2006
a(n) ~ 2^(n - 3/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012, simplified Jan 31 2023
G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+x)/(k+1 - x*(1+x)*(2*k+2)*(4*k+3)/(2*x*(1+x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
a(n) = 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2). - Peter Luschny, Sep 18 2014
0 = a(n)*(+16*a(n+1) + 24*a(n+2) - 8*a(n+3)) + a(n+1)*(+8*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Oct 13 2016
It appears that Pi/2 = Sum_{n >= 1} (-1)^(n-1)*4^n/(n*a(n-1)*a(n)). - Peter Bala, Feb 20 2017
G.f.: G(x) = (1/(2*Pi))*Integral_{y=0..2*Pi} 1/(1-x*(4*(sin(y)-cos(y))*sin(y)))*dy, also satisfies: (2+4*x)*G(x)-(1-4*x-4*x^2)*G'(x)=0. - Bradley Klee, Jul 19 2018
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit. - Seiichi Manyama, Aug 29 2025
Comments