A104509 Matrix inverse of triangle A104505, which is the right-hand side of triangle A084610 of coefficients in (1 + x - x^2)^n.
1, 1, -1, 3, -2, 1, 4, -6, 3, -1, 7, -12, 10, -4, 1, 11, -25, 25, -15, 5, -1, 18, -48, 60, -44, 21, -6, 1, 29, -91, 133, -119, 70, -28, 7, -1, 47, -168, 284, -296, 210, -104, 36, -8, 1, 76, -306, 585, -699, 576, -342, 147, -45, 9, -1, 123, -550, 1175, -1580, 1485, -1022, 525, -200, 55, -10, 1, 199, -979, 2310, -3454, 3641
Offset: 0
Examples
Rows begin: 1; 1, -1; 3, -2, 1; 4, -6, 3, -1; 7, -12, 10, -4, 1; 11, -25, 25, -15, 5, -1; 18, -48, 60, -44, 21, -6, 1; 29, -91, 133, -119, 70, -28, 7, -1; 47, -168, 284, -296, 210, -104, 36, -8, 1; 76, -306, 585, -699, 576, -342, 147, -45, 9, -1; ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10152 (rows 0 to 141, flattened).
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Wikipedia, Lucas polynomials.
Crossrefs
Programs
-
Maple
S:= series((1 + x^2)/(1-x-x^2 + x*y),x, 20): for n from 0 to 19 do R[n]:= coeff(S,x,n) od: seq(seq(coeff(R[n],y,j),j=0..n), n=0..19); # Robert Israel, Jun 30 2015
-
Mathematica
nmax = 11; T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k]; M = Table[T[n, k], {n, 0, nmax}, {k, 0, nmax}] // Inverse; Table[M[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
-
PARI
{ T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1 + X^2)/(1-X-X^2 + X*Y),n,x),k,y); }
-
PARI
{ tabl(nn) = my(m = matrix(nn, nn, n, k, n--; k--; if((n
Michel Marcus, Jun 30 2015 -
PARI
{ A104509(n,k) = if(n==0, k==0, (-1)^k * sum(i=0, (n-k)\2, n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k) )); } \\ Max Alekseyev, Oct 11 2021
Formula
For n>=1, a(n,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k). - Max Alekseyev, Oct 11 2021
G.f.: A(x, y) = (1 + x^2)/(1-x-x^2 + x*y).
G.f. for column k: g_k(x) = -(x^2+1)*x^k/(x^2+x-1)^(k+1). - Robert Israel, Jun 30 2015
G.f. for row n>=1 is the Lucas polynomial L_n(1-x). - Max Alekseyev, Oct 11 2021
Comments