cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A104509 Matrix inverse of triangle A104505, which is the right-hand side of triangle A084610 of coefficients in (1 + x - x^2)^n.

Original entry on oeis.org

1, 1, -1, 3, -2, 1, 4, -6, 3, -1, 7, -12, 10, -4, 1, 11, -25, 25, -15, 5, -1, 18, -48, 60, -44, 21, -6, 1, 29, -91, 133, -119, 70, -28, 7, -1, 47, -168, 284, -296, 210, -104, 36, -8, 1, 76, -306, 585, -699, 576, -342, 147, -45, 9, -1, 123, -550, 1175, -1580, 1485, -1022, 525, -200, 55, -10, 1, 199, -979, 2310, -3454, 3641
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Riordan array ( (1 + x^2)/(1 - x - x^2), -x/(1 - x - x^2) ) belonging to the hitting time subgroup of the Riordan group (see Peart and Woan). - Peter Bala, Jun 29 2015
The sums of absolute values along steep diagonals in this triangle are: 1, 1, 3, 4 + |-1|, 7 + |-2|, 11 + |-6|, 18 + |-12| + 1, ... and these are the tribonacci numbers A000213 that begin with 1, 1, 1, 3. To see this, replace the y in the g.f. A(x,y) = (1 + x^2)/(1-x-x^2 + x*y) with y=-x^2, multiply by x, and add 1, to obtain the g.f. (1 - x^2)/(1-x-x^2-x^3) for A000213. - Noah Carey and Greg Dresden, Nov 02 2021

Examples

			Rows begin:
   1;
   1,   -1;
   3,   -2,   1;
   4,   -6,   3,   -1;
   7,  -12,  10,   -4,   1;
  11,  -25,  25,  -15,   5,   -1;
  18,  -48,  60,  -44,  21,   -6,   1;
  29,  -91, 133, -119,  70,  -28,   7,  -1;
  47, -168, 284, -296, 210, -104,  36,  -8, 1;
  76, -306, 585, -699, 576, -342, 147, -45, 9, -1; ...
		

Crossrefs

Leftmost column is A000204 (Lucas numbers). Other columns include: A045925, A067988. Row sums are: {1,0,2,0,2,0,2,...}. Absolute row sums form: A099425. Antidiagonal sums are: {1,1,2,2,2,2,2,...}. Absolute antidiagonal sums are: A084214.

Programs

  • Maple
    S:= series((1 + x^2)/(1-x-x^2 + x*y),x, 20):
    for n from 0 to 19 do R[n]:= coeff(S,x,n) od:
    seq(seq(coeff(R[n],y,j),j=0..n), n=0..19); # Robert Israel, Jun 30 2015
  • Mathematica
    nmax = 11;
    T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
    M = Table[T[n, k], {n, 0, nmax}, {k, 0, nmax}] // Inverse;
    Table[M[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
  • PARI
    { T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1 + X^2)/(1-X-X^2 + X*Y),n,x),k,y); }
    
  • PARI
    { tabl(nn) = my(m = matrix(nn, nn, n, k, n--; k--; if((nMichel Marcus, Jun 30 2015
    
  • PARI
    { A104509(n,k) = if(n==0, k==0, (-1)^k * sum(i=0, (n-k)\2, n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k) )); } \\ Max Alekseyev, Oct 11 2021

Formula

For n>=1, a(n,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k). - Max Alekseyev, Oct 11 2021
G.f.: A(x, y) = (1 + x^2)/(1-x-x^2 + x*y).
G.f. for column k: g_k(x) = -(x^2+1)*x^k/(x^2+x-1)^(k+1). - Robert Israel, Jun 30 2015
G.f. for row n>=1 is the Lucas polynomial L_n(1-x). - Max Alekseyev, Oct 11 2021

A104505 Triangle, read by rows, equal to the right-hand side of the triangle A084610, with row n listing the coefficients of (1+x-x^2)^n: T(n,k) = [x^(n+k)] (1+x-x^2)^n, for n>=k>=0.

Original entry on oeis.org

1, 1, -1, -1, -2, 1, -5, 0, 3, -1, -5, 8, 2, -4, 1, 11, 15, -10, -5, 5, -1, 41, -6, -30, 10, 9, -6, 1, 29, -77, -14, 49, -7, -14, 7, -1, -125, -120, 112, 56, -70, 0, 20, -8, 1, -365, 117, 288, -126, -126, 90, 12, -27, 9, -1, -131, 770, 45, -540, 90, 228, -105, -30, 35, -10, 1, 1409, 946, -1265, -495, 858, 33, -363, 110, 55, -44
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Matrix inverse is triangle A104509 and is related to Fibonacci numbers. Column 0 equals A098331, with g.f.: 1/sqrt(1-2*x+5*x^2). Column 1 equals A104506, with g.f.: ((1-x)/sqrt(1-2*x+5*x^2)-1)/(2*x). Row sums equal A104507. Absolute row sums equal A104508.
Array (1/sqrt(1-2x+5x^2), (1-x-sqrt(1-2x+5x^2))/(2x)), in Riordan array notation. Product of A120616 by A007318. - Paul Barry, Jun 17 2006

Examples

			Rows begin:
1;
1,-1;
-1,-2,1;
-5,0,3,-1;
-5,8,2,-4,1;
11,15,-10,-5,5,-1;
41,-6,-30,10,9,-6,1;
29,-77,-14,49,-7,-14,7,-1;
-125,-120,112,56,-70,0,20,-8,1;
-365,117,288,-126,-126,90,12,-27,9,-1;
-131,770,45,-540,90,228,-105,-30,35,-10,1; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
  • PARI
    T(n,k)=if(n
    				

Formula

T(n, 0) = A098331(n). T(n, 1) = n*A007440(n) (n>0).
Column k has e.g.f. exp(x)*Bessel_I(k,2*sqrt(-1)x)*(sqrt(-1))^k. - Paul Barry, Jun 17 2006
From Peter Bala, Jun 29 2015: (Start)
Matrix factorization in the Riordan group: ( 1/(1 - x), x/(1 - x) ) * ( 1/sqrt(1 + 4*x^2), (1 - sqrt(1 + 4*x^2))/(2*x) ) = A007318 * signed version of A108044.
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = (1 - x - sqrt(1 - 2*x + 5*x^2))/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = x^2 + x - 1. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

A104507 Row sums of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1+x-x^2)^n.

Original entry on oeis.org

1, 0, -2, -3, 2, 15, 19, -28, -134, -129, 353, 1254, 791, -4238, -11818, -3123, 49162, 110007, -17783, -554458, -996323, 690932, 6096792, 8624747, -12287153, -65419110, -69285296, 178655307, 684550946, 483569751, -2354830741, -6970706252, -2324044054, 29195280375, 68793790705
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x/((1 - x)) + 1/((-Sqrt[5 x^2 - 2 x + 1] + x + 1)) x (1 - (5 x - 1)/(Sqrt[5 x^2 - 2 x + 1]))), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 05 2015 *)
  • Maxima
    a(n):=sum((-1)^j*binomial(n,j)*binomial(n-j-1,n-2*j),j,0,n/2); /* Vladimir Kruchinin, Oct 04 2015 */
    
  • PARI
    a(n)=sum(k=0,n,polcoeff((1+x-x^2)^n,n+k))
    
  • PARI
    a(n) = sum(k=0, n/2, (-1)^k*binomial(n,k)*binomial(n-k-1,n-2*k));
    vector(40, n, a(n-1)) \\ Altug Alkan, Oct 04 2015

Formula

G.f.: (x/((1-x))+1/((-sqrt(5*x^2-2*x+1)+x+1))*x*(1-(5*x-1)/(sqrt(5*x^2-2*x+1)))). - Vladimir Kruchinin, Oct 04 2015
a(n) = Sum_{j=0..n/2}((-1)^j*binomial(n,j)*binomial(n-j-1,n-2*j)). - Vladimir Kruchinin, Oct 04 2015
From Peter Bala, Jul 24 2025: (Start)
a(n) = [x^n] (1 - x^2/(1 - x))^n. Cf. A246437.
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all primes p and all positive integers n and k.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 - x^2 - x^3 + x^4 + 4*x^5 + ... is the g.f. of A108623.(End)

A104508 Absolute row sums of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1+x-x^2)^n.

Original entry on oeis.org

1, 2, 4, 9, 20, 47, 103, 198, 512, 1161, 1985, 5590, 13005, 21684, 59294, 142273, 270858, 634187, 1526399, 3256372, 6779657, 16020364, 37758202, 79702477, 164647757, 424655100, 940639154, 1709638551, 4675803604, 10774789429
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Crossrefs

Cf. A104505.

Programs

  • PARI
    a(n)=sum(k=0,n,abs(polcoeff((1+x-x^2)^n,n+k)))

A104506 Column 1 of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1 + x - x^2)^n.

Original entry on oeis.org

0, -1, -2, 0, 8, 15, -6, -77, -120, 117, 770, 946, -1728, -7735, -6930, 22800, 76960, 42245, -282150, -751640, -125800, 3341205, 7145710, -2002725, -38228232, -65418925, 55550014, 424605078, 566938400, -936604097, -4587287310
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(((1-x)/sqrt(1-2*x+5*x^2+x^2*O(x^n))-1)/(2*x),n)}

Formula

G.f.: ((1-x)/sqrt(1-2*x+5*x^2) - 1)/(2*x).
a(n) = (-1)^n*n*A007440(n) (reversion of g.f. for Fibonacci numbers).
a(n) = -Sum_{k=0..floor(n/2)} C(n, k)*C(n-k, k+1)*(-1)^k. - Paul Barry, May 02 2005
E.g.f.: -exp(x)Bessel_I(1,2*i*x)/i, i=sqrt(-1). - Paul Barry, Feb 10 2006
-(n-1)*(n+1)*a(n) + n*(2*n-1)*a(n-1) - 5*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Aug 17 2017

A026375 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).

Original entry on oeis.org

1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
a(n) == 0 (mod 3) if and only if n is in A081606. - Fabio Visonà, Aug 03 2023

Examples

			G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
		

Crossrefs

Column 3 of A292627. Column 1 of A110165. Central column of A272866.
First differences are in A085362. Bisection of A026380.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a026375 n = a026374 (2 * n) n  -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    a := n -> simplify(GegenbauerC(n, -n, -3/2)):
    seq(a(n), n=0..22); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    (* From Michael Somos, May 11 2014: (Start) *)
    a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
    a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
    a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
    (* (End) *)
  • Maxima
    A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
    makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    

Formula

Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
This sequence is the binomial transform of A000984. - John W. Layman, Aug 11 2000; proved by Emeric Deutsch, Oct 26 2002
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
G.f.: 1/sqrt(1-6*x+5*x^2). - Emeric Deutsch, Oct 26 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
a(n) = A026380(2*n-1) (n>0). - Emeric Deutsch, Feb 18 2004
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = GegenbauerC(n, -n, -3/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

Extensions

Definition simplified by N. J. A. Sloane, Feb 16 2012

A084609 Coefficients of 1/sqrt(1-4*x-8*x^2); also, a(n) is the central coefficient of (1+2*x+3*x^2)^n.

Original entry on oeis.org

1, 2, 10, 44, 214, 1052, 5284, 26840, 137638, 710828, 3692140, 19266920, 100932220, 530479640, 2795917960, 14771797424, 78210099718, 414862155980, 2204273582236, 11729283976136, 62496686731924, 333400654676168
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), U can have 3 colors and H can have 2 colors. - N-E. Fahssi, Mar 30 2008
Self-convolution of a(n)/2^n gives A002605(n+1). - Vladimir Reshetnikov, Oct 10 2016
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Crossrefs

Row sums of A328347.

Programs

  • Magma
    A084609:= func< n | (&+[Binomial(n,j)*Binomial(2*(n-j),n)*2^j: j in [0..Floor(n/2)]]) >;
    [A084609(n): n in [0..50]]; // G. C. Greubel, Mar 26 2023
    
  • Mathematica
    (* Programs from Robert G. Wilson v, Mar 02 2011 *)
    a[n_]:= Sum[Binomial[n, k] Binomial[2(n-k), n] 2^k, {k, 0, n/2}]; Array[a, 30, 0]
    a[n_]:= CoefficientList[Expand[(1 +2x +3x^2)^n], x][[n+1]]; Array[a, 30, 0]
    CoefficientList[Series[1/Sqrt[1 -4x -8x^2], {x,0,30}], x]
    Range[0, 30]! CoefficientList[ Series[ Exp[ 2x] BesselI[0, Sqrt[12] x], {x, 0, 30}], x] (* End *)
    Table[2^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 3], {n,0,30}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • Maxima
    a(n):=coeff(expand((1+2*x+3*x^2)^n),x,n);
    makelist(a(n),n,0,12);
    
  • PARI
    for(n=0,30,t=polcoeff((1+2*x+3*x^2)^n,n,x); print1(t","))
    
  • SageMath
    def A084609(n): return sum(binomial(n,j)*binomial(2*(n-j),n)*2^j for j in range(n//2+1))
    [A084609(n) for n in range(51)] # G. C. Greubel, Mar 26 2023

Formula

a(n) = Sum_{k = 0..floor(n/2)} C(n,k)*C(2*(n-k),n)*2^k. - Paul Barry, Sep 08 2004
a(n) = Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)*3^k*2^(n-2*k); a(n) = Sum_{k = 0..floor(n/2)} C(n,k)*C(n-k,k)*3^k*2^(n-2k). - Paul Barry, Sep 19 2006
E.g.f.: exp(2*x) * Bessel_I(0,2*sqrt(3)*x)
a(n) = ( 2*(2*n-1)*a(n-1) + 8*(n-1)*a(n-2) )/n, a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 20 2012
a(n) ~ sqrt(18+6*sqrt(3))*(2+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - 2*x*(1+2*x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+2*x)/(k+1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: G(0), where G(k)= 1 + x*(2+4*x)*(4*k+1)/(2*k+1 - x*(1+2*x)*(2*k+1)*(4*k+3)/(x*(1+2*x)*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 18 2013
a(n) = 2^n * hypergeom([(1-n)/2,-n/2], [1], 3) = binomial(2*n, n) * hypergeom([(1-n)/2,-n/2], [1/2-n], -2). - Vladimir Reshetnikov, Oct 10 2016
a(n) = (-2*sqrt(-2))^n * P(n, sqrt(-1/2)), where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Feb 07 2022

A084611 a(n) = sum of absolute values of coefficients of (1+x-x^2)^n.

Original entry on oeis.org

1, 3, 7, 13, 35, 83, 165, 367, 899, 1957, 3839, 9771, 22709, 43213, 102963, 255061, 525601, 1098339, 2798273, 6202969, 11746259, 29976073, 70898649, 140495779, 314391789, 787757461, 1688887719, 3337986541, 8583687613, 19647782463
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

Limit_{n -> oo} a(n+1)/a(n) does not exist; however, lim_{n -> oo} a(n)^(1/n) = sqrt(5) (conjecture).

Crossrefs

Programs

  • Magma
    A084610:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-1)^j: j in [0..k]]) >;
    [(&+[Abs(A084610(n,k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 26 2023
    
  • Mathematica
    Table[Sum[Abs[Coefficient[Expand[(1+x-x^2)^n],x,k]],{k,0,2*n}],{n,0,30}] (* Vaclav Kotesovec, Jul 28 2013 *)
  • PARI
    {a(n)=sum(k=0,2*n,abs(polcoeff((1+x-x^2+x*O(x^k))^n,k)))}
    for(n=0,30,print1(a(n),", "))
    
  • SageMath
    def A084610(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*(-1)^j for j in range(k//2+1))
    def A084611(n): return 2*sum(abs(A084610(n,k)) for k in range(n)) + abs(A084610(n,n))
    [A084611(n) for n in range(50)] # G. C. Greubel, Mar 26 2023

A078996 Triangle read by rows: let f(x) = x/(1-x-x^2); n-th row gives coefficients of denominator polynomial of n-th derivative f(x)^(n), with highest powers first, for n >= 0.

Original entry on oeis.org

-1, -1, 1, 1, 2, -1, -2, 1, 1, 3, 0, -5, 0, 3, -1, 1, 4, 2, -8, -5, 8, 2, -4, 1, 1, 5, 5, -10, -15, 11, 15, -10, -5, 5, -1, 1, 6, 9, -10, -30, 6, 41, -6, -30, 10, 9, -6, 1, 1, 7, 14, -7, -49, -14, 77, 29, -77, -14, 49, -7, -14, 7, -1, 1, 8, 20, 0, -70, -56, 112, 120, -125, -120, 112, 56, -70, 0, 20, -8, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 12 2003

Keywords

Examples

			Triangle begins:
  -1, -1,  1;
   1,  2, -1, -2,  1;
   1,  3,  0, -5,  0,  3, -1;
  ...
		

Crossrefs

See A084610 for another version of this triangle.

Formula

f(x)^(n), for n=0, 1, 2, 3, 4, ..., where f(x)= x/(1-x-x^2).
G.f.: G(0)/(2*x) - 1/x - 2 - 2*x + 2*x^2 , where G(k)= 1 + 1/( 1 - (1+x-x^2)*x^(2*k+1)/((1+x-x^2)*x^(2*k+1) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013

Extensions

Edited by N. J. A. Sloane, Jan 15 2011

A137454 Irregular triangle read by rows: coefficients of polynomials p(x, n) where p(x,n) = x^2*p(x,n-1) + (-x-1)*p(x,n-2) + p(x,n-3).

Original entry on oeis.org

1, -1, -1, 1, -1, -1, -1, -1, 1, 2, 2, -1, -2, -1, -1, 1, 0, 1, 5, 4, -1, -3, -1, -1, 1, -3, -5, -2, 3, 9, 6, -1, -4, -1, -1, 1, 2, 1, -10, -16, -6, 6, 14, 8, -1, -5, -1, -1, 1, 3, 9, 14, 4, -23, -34, -12, 10, 20, 10, -1, -6, -1, -1, 1, -5, -8, 10, 38, 45, 10, -44, -60, -20, 15, 27, 12, -1, -7, -1, -1, 1, -1, -11, -38, -42, 23, 101, 105, 20
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Apr 18 2008

Keywords

Examples

			{1},
{-1, -1, 1},
{-1, -1, -1, -1, 1},
{2, 2, -1, -2, -1, -1, 1},
{0, 1, 5, 4, -1, -3, -1, -1, 1},
{-3, -5, -2, 3,9, 6, -1, -4, -1, -1, 1},
{2, 1, -10, -16, -6, 6,14, 8, -1, -5, -1, -1, 1},
{3, 9,14, 4, -23, -34, -12, 10, 20, 10, -1, -6, -1, -1, 1},
{-5, -8, 10, 38, 45, 10, -44, -60, -20, 15,27, 12, -1, -7, -1, -1, 1},
{-1, -11, -38, -42, 23, 101, 105,20, -75, -95, -30, 21, 35, 14, -1, -8, -1, -1,1},
{8, 22, 11, -55, -144, -131, 45, 215, 205, 35, -118, -140, -42, 28, 44, 16, -1, -9, -1, -1, 1}
		

Crossrefs

Cf. A084610.

Programs

  • Mathematica
    p[x, -1] = 0;
    p[x, 0] = 1;
    p[x, 1] = x^2 - x - 1;
    p[x_, n_] := x^2*p[x, n - 1] + (-x - 1)*p[x, n - 2] + p[x, n - 3];
    Table[Expand[p[x, n]], {n, 0, 10}];
    a = Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[a1]

Formula

p(x,-1)=0; p(x,0)=1; p(x,1) = x^2 - x - 1; p(x,n) = x^2*p(x,n-1) + (-x-1)*p(x,n-2) + p(x,n-3).

Extensions

Heavily edited and corrected by Joerg Arndt, Apr 30 2018
Showing 1-10 of 11 results. Next