cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001834 a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, 716035, 2672279, 9973081, 37220045, 138907099, 518408351, 1934726305, 7220496869, 26947261171, 100568547815, 375326930089, 1400739172541, 5227629760075, 19509779867759, 72811489710961, 271736178976085
Offset: 0

Views

Author

Keywords

Comments

Sequence also gives values of x satisfying 3*y^2 - x^2 = 2, the corresponding y being given by A001835(n+1). Moreover, quadruples(p, q, r, s) satisfying p^2 + q^2 + r^2 = s^2, where p = q and r is either p+1 or p-1, are termed nearly isosceles Pythagorean and are given by p = {x + (-1)^n}/3, r = p-(-1)^n, s = y for n > 1. - Lekraj Beedassy, Jul 19 2002
a(n)= A002531(1+2*n). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 14 2007
361 written in base A001835(n+1) - 1 is the square of a(n). E.g., a(12) = 2672279, A001835(13) - 1 = 1542840. We have 361_(1542840) = 3*1542840 + 6*1542840 + 1 = 2672279^2. - Richard Choulet, Oct 04 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators=A001834, denominators=A001835. - Clark Kimberling, Aug 27 2008
General recurrence is a(n) = (a(1) - 1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x + 1)^n, k = (a(1) - 3), x = (1 + sqrt((a(1) + 1)/(a(1) - 3)))/2. Examples in OEIS: a(1) = 4 gives A002878, primes in it A121534. a(1) = 5 gives A001834, primes in it A086386. a(1) = 6 gives A030221, primes in it A299109. a(1) = 7 gives A002315, primes in it A088165. a(1) = 8 gives A033890, primes in it not in OEIS (do there exist any?). a(1) = 9 gives A057080, primes in {71, 34649, 16908641, ...}. a(1) = 10 gives A057081, primes in it {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030192. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2*n) X (2*n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
x-values in the solution to 3x^2 + 6 = y^2 (see A082841 for the y-values). - Sture Sjöstedt, Nov 25 2011
Pisano period lengths: 1, 1, 2, 4, 3, 2, 8, 4, 6, 3, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
The aerated sequence (b(n))A100047%20for%20a%20connection%20with%20Chebyshev%20polynomials.%20-%20_Peter%20Bala">{n>=1} = [1, 0, 5, 0, 19, 0, 71, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - _Peter Bala, Mar 22 2015
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001835 and with any member of A001075. - René Gy, Feb 26 2018
From Wolfdieter Lang, Oct 15 2020: (Start)
((-1)^n)*a(n) = X(n) = (-1)^n*(S(n, 4) + S(n-1, 4)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 4*X*Y = +6, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form of discriminant 12, representing 6, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
Floretion Algebra Multiplication Program, FAMP Code: A001834 = (4/3)vesseq[ - .25'i + 1.25'j - .25'k - .25i' + 1.25j' - .25k' + 1.25'ii' + .25'jj' - .75'kk' + .75'ij' + .25'ik' + .75'ji' - .25'jk' + .25'ki' - .25'kj' + .25e], apart from initial term

Examples

			G.f. = 1 + 5*x + 19*x^2 + 71*x^3 + 265*x^4 + 989*x^5 + 3691*x^6 + ...
		

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

A bisection of sequence A002531.
Cf. A001352, A001835, A086386 (prime members).
Cf. A026150.
a(n)^2+1 = A094347(n+1).

Programs

  • Haskell
    a001834 n = a001834_list !! (n-1)
    a001834_list = 1 : 5 : zipWith (-) (map (* 4) $ tail a001834_list) a001834_list
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    f:=n->((1+sqrt(3))^(2*n+1)+(1-sqrt(3))^(2*n+1))/2^(n+1); # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    a[0] = 1; a[1] = 5; a[n_] := a[n] = 4a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 25}] (* Robert G. Wilson v, Apr 24 2004 *)
    Table[Expand[((1+Sqrt[3])^(2*n+1)+(1+Sqrt[3])^(2*n+1))/2^(n+1)],{n, 0, 20}] (* Anton Vrba, Feb 14 2007 *)
    LinearRecurrence[{4, -1}, {1, 5}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A002531 *)
    a[3, 20] (* Gerry Martens, Jun 07 2015 *)
    Round@Table[LucasL[2n+1, Sqrt[2]]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 + quadgen(12)) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( polchebyshev(n-1, 2) + polchebyshev(n, 2), x, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • SageMath
    [(lucas_number2(n,4,1)-lucas_number2(n-1,4,1))/2 for n in range(1, 27)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - N. J. A. Sloane, Nov 10 2009
a(n) = (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n). - Dean Hickerson, Dec 01 2002
From Mario Catalani, Apr 11 2003: (Start)
With a = 2 + sqrt(3), b = 2 - sqrt(3): a(n) = (1/sqrt(2))(a^(n + 1/2) - b^(n + 1/2)).
a(n) - a(n-1) = A003500(n).
a(n) = sqrt(1 + 12*A061278(n) + 12*A061278(n)^2). (End)
a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - Anton Vrba, Feb 14 2007
G.f.: (1 + x)/((1 - 4*x + x^2)). Simon Plouffe in his 1992 dissertation.
a(n) = S(2*n, sqrt(6)) = S(n, 4) + S(n-1, 4); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 4) = A001353(n).
For all members x of the sequence, 3*x^2 + 6 is a square. Limit_{n->infinity} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A001571(n) + 1. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n - i)*binomial(2*n - i, i); then (-1)^n*q(n, -6) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n + 1, 2*k)*3^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = floor(sqrt(3)*A001835(n+1)). - Philippe Deléham, Mar 03 2004
a(n+1) - 2*a(n) = 3*A001835(n+1). Using the known relation A001835(n+1) = sqrt((a(n)^2 + 2)/3) it follows that a(n+1) - 2*a(n) = sqrt(3*(a(n)^2 + 2)). Therefore a(n+1)^2 + a(n)^2 - 4*a(n+1)*a(n) - 6 = 0. - Creighton Dement, Apr 18 2005
a(n) = L(n,-4)*(-1)^n, where L is defined as in A108299; see also A001835 for L(n,+4). - Reinhard Zumkeller, Jun 01 2005
a(n) = Jacobi_P(n, 1/2, -1/2, 2)/Jacobi_P(n, -1/2, 1/2, 1). - Paul Barry, Feb 03 2006
Equals binomial transform of A026150 starting (1, 4, 10, 28, 76, ...) and double binomial transform of (1, 3, 3, 9, 9, 27, 27, 81, 81, ...). - Gary W. Adamson, Nov 30 2007
Sequence satisfies 6 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(-1-n) = -a(n). - Michael Somos, Sep 19 2008
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(5*A125905(n) + A125905(n+1)).
E.g.f.: exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). (End)
a(n) = A061278(n+1) - A061278(n-1) for n>=2. - John P. McSorley, Jun 20 2020
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 2), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n) - 2*a(n-1) = 3 * A001835(n) for n >= 1.
For arbitrary x, a(n+x)^2 - 4*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 6 with a(n) := (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n) as above. The particular case x = 0 is noted above,
a(n+1/2) = sqrt(6) * A001353(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6*sqrt(6) + 12) * A001353(n+1).
a(n+3/4) - a(n+1/4) = sqrt(2*sqrt(6) - 4) * A001075(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001352(n) + 1/A001352(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3*(1 - 2/A102206(k))). (End)

A140480 RMS numbers: numbers n such that root mean square of divisors of n is an integer.

Original entry on oeis.org

1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 29 2008, Jul 11 2008

Keywords

Comments

For any numbers, A and B, both appearing in the sequence, if gcd(A,B)=1, then A*B is also in the sequence. - Andrew Weimholt, Jul 01 2008
The primes in this sequence are the NSW primes (A088165). For the terms less than 2^31, the only powers greater than 1 appearing in the prime factorization of numbers are 3^3 and 13^2. It appears that all terms are +-1 (mod 8). See A224988 for even numbers. - T. D. Noe, Jul 06 2008, Apr 25 2013
A basis for this sequence is given by A002315. This can be considered as the convergents of quasiregular continued fractions or a special 6-ary numeration system (see A. S. Fraenkel) which gives the characterization of positions of some heap or Wythoff game. What is the Sprague-Grundy function of this game?
Sequence generalized: sigma_r-numbers are numbers n for which sigma_r(n)/sigma_0(n) = c^r. Sigma_r(n) denotes sum of r-th powers of divisors of n; c,r positive integers. This sequence are sigma_2-numbers, A003601 are sigma_1-numbers. In a weaker form we have sigma_r(n)/sigma_0(n) = c^t; t is an integer from <1,r>. - Ctibor O. Zizka, Jul 14 2008
The primes in this sequence are prime numerators with an odd index in A001333. The RMS values (A141812) of prime RMS numbers (this sequence) are prime Pell numbers (A000129) with an odd index. - Ctibor O. Zizka, Aug 13 2008
From Ctibor O. Zizka, Aug 30 2008: (Start)
The set of RMS numbers n could be split into subsets according to the number and form of divisors of n. By definition, RMS(n) = sqrt(sigma_2(n) / sigma_0(n)) should be an integer. Now consider some examples. For n prime number, n has 2 divisors [1,n] and we have to solve Pell's equation n^2 = 2*C^2 - 1; C positive integer. The solution is a prime n of the form u(i) = 6*u(i-1) - u(i-2), i >= 2, u(0)=1, u(1)=7, known as an NSW prime (A088165). For n = p_1*p_2, p_1 and p_2 primes, n has 4 divisors {1; p_1; p_2; p_1*p_2}. There are 2 possible cases. Firstly p^2 = (2*C)^2 - 1 which does not hold for any prime p; secondly p_1^2 = 2*C_1^2 - 1 and p_2^2 = 2*C_2^2 - 1; C_1 and C_2 positive integers.
The solution is that p_1 and p_2 are different NSW primes. If n = p^3, divisors of n are {1; p; p^2; p^3} and we have to solve the Diophantine equation (p^8 - 1)/(p - 1) = (2*C)^2. This equation has no solution for any prime p. RMS numbers n with 4 divisors are only of the form n = p_1*p_2, with p_1 and p_2 NSW primes. The general case is n = p_1*...*p_t, n has 2^t divisors, and for t >= 3, NSW primes are not the only solution. If some of the prime divisors are equals p_i = p_j = ... = p_k, the general case n = p_1*...*p_t is "degenerate" because of the multiplicity of prime factors and therefore n has fewer than 2^t divisors. (End)
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1) - 3, x = (1 + sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878, whose prime terms give A121534. a(1)=5 gives A001834, whose prime terms give A086386. a(1)=6 gives A030221, whose prime terms {29, 139, 3191, ...} are not a sequence on the OEIS. a(1)=7 gives A002315, whose prime terms give A088165. a(1)=8 gives A033890; the OEIS does not have its prime terms as a sequence (do there exist any prime terms?). a(1)=9 gives A057080, whose prime terms {71, 34649, 16908641, ...} are not a sequence in the OEIS. a(1)=10 gives A057081, whose prime terms {389806471, 192097408520951, ...} are not a sequence in the OEIS. - Ctibor O. Zizka, Sep 02 2008
16 of the first 1660 terms are even (the smallest is 2217231104). The first 16 even terms are all divisible by 30976. - Donovan Johnson, Apr 16 2013
All the 83 even terms up to 10^13 (see A224988) are divisible by 30976. - Giovanni Resta, Oct 29 2019

Crossrefs

Programs

  • Haskell
    a140480 n = a140480_list !! (n-1)
    a140480_list = filter
        ((== 1) . a010052 . (\x -> a001157 x `div` a000005 x)) a020486_list
    -- Reinhard Zumkeller, Jan 15 2013
  • Mathematica
    rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; m = 160000; sel1 = Select[8*Range[0, m]+1, rmsQ]; sel7 = Select[8*Range[m]-1, rmsQ]; Union[sel1, sel7] (* Jean-François Alcover, Aug 31 2011, after T. D. Noe's comment *)
    Select[Range[1300000],IntegerQ[RootMeanSquare[Divisors[#]]]&] (* Harvey P. Dale, Mar 24 2016 *)

Extensions

More terms from T. D. Noe and Andrew Weimholt, Jul 01 2008

A088165 NSW primes: NSW numbers that are also prime.

Original entry on oeis.org

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679
Offset: 1

Views

Author

Christian Schroeder, Sep 21 2003

Keywords

Comments

Next term a(9) is too large (99 digits) to include here. - Ray Chandler, Sep 21 2003
These primes are the prime RMS numbers (A140480): primes p such that (1+p^2)/2 is a square r^2. Then r is a Pell number, A000129. - T. D. Noe, Jul 01 2008
Also prime numerators with an odd index in A001333. - Ctibor O. Zizka, Aug 13 2008
r in the above note of T. D. Noe is a prime Pell number (A000129) with an odd index. - Ctibor O. Zizka, Aug 13 2008
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1)-3, x = (1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in the OEIS: a(1)=4 gives A002878, primes in it A121534. a(1)=5 gives A001834, primes in it A086386. a(1)=6 gives A030221, primes in it not in the OEIS {29, 139, 3191, ...}. a(1)=7 gives A002315, primes in it A088165. a(1)=8 gives A033890, primes in it not in the OEIS (do there exist any ?). a(1)=9 gives A057080, primes in it not in the OEIS {71, 34649, 16908641, ...}. a(1)=10 gives A057081, primes in it not in the OEIS {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008

References

  • Paulo Ribenboim, The New Book of Prime Number Records, 3rd edition, Springer-Verlag, New York, 1995, pp. 367-369.

Crossrefs

Cf. A002315 (NSW numbers), A005850 (indices for NSW primes).

Programs

  • PARI
    w=3+quadgen(32); forprime(p=2,1e3, if(ispseudoprime(t=imag((1+w)*w^p)), print1(t", "))) \\ Charles R Greathouse IV, Apr 29 2015

Formula

a(n) mod A005850(n) = 1. - Altug Alkan, Mar 17 2016

Extensions

More terms from Ray Chandler, Sep 21 2003

A299107 Probable primes in sequence {s_k(4)}, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

5, 19, 71, 3691, 191861, 138907099, 26947261171, 436315574686414344004975231616076636245689199862837798457639364993981991744926792179
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Crossrefs

Formula

a(n) = s_{A299100(n)}(4) = A001834(A299100(n)).

A096146 Prime numerators of the rational convergents to sqrt(3).

Original entry on oeis.org

2, 5, 7, 19, 71, 97, 3691, 191861, 138907099, 708158977, 26947261171
Offset: 1

Views

Author

Cino Hilliard, Jul 24 2004

Keywords

Comments

Next term is too large to include.
This is the prime subsequence of A002531. See also A086386 for numerators where both numerator and denominator are primes. - Ray Chandler, Aug 01 2004

Crossrefs

Programs

  • Mathematica
    Select[Numerator[Convergents[Sqrt[3],200]],PrimeQ] (* Harvey P. Dale, Nov 08 2022 *)
  • PARI
    \\ Continued fraction rational approximation of numeric constants f. m=steps.
    cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,", ")); ) }

Extensions

Offset corrected by Amiram Eldar, Jul 11 2024
Showing 1-5 of 5 results.