cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A002145 Primes of the form 4*k + 3.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1

Views

Author

Keywords

Comments

Or, odd primes p such that -1 is not a square mod p, i.e., the Legendre symbol (-1/p) = -1. [LeVeque I, p. 66]. - N. J. A. Sloane, Jun 28 2008
Primes which are not the sum of two squares, see the comment in A022544. - Artur Jasinski, Nov 15 2006
Natural primes which are also Gaussian primes. (It is a common error to refer to this sequence as "the Gaussian primes".)
Inert rational primes in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
Numbers n such that the product of coefficients of (2n)-th cyclotomic polynomial equals -1. - Benoit Cloitre, Oct 22 2002
For p and q both belonging to the sequence, exactly one of the congruences x^2 = p (mod q), x^2 = q (mod p) is solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Also primes p that divide L((p-1)/2) or L((p+1)/2), where L(n) = A000032(n), the Lucas numbers. Union of A122869 and A122870. - Alexander Adamchuk, Sep 16 2006
Also odd primes p that divide ((p-1)!! + 1) or ((p-2)!! + 1). - Alexander Adamchuk, Nov 30 2006
Also odd primes p that divide ((p-1)!! - 1) or ((p-2)!! - 1). - Alexander Adamchuk, Apr 18 2007
This sequence is a proper subset of the set of the absolute values of negative fundamental discriminants (A003657). - Paul Muljadi, Mar 29 2008
Bernard Frénicle de Bessy discovered that such primes cannot be the hypotenuse of a Pythagorean triangle in opposition to primes of the form 4*n+1 (see A002144). - after Paul Curtz, Sep 10 2008
A079261(a(n)) = 1; complement of A145395. - Reinhard Zumkeller, Oct 12 2008
Subsequence of A007970. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = -1.
Primes p such that p XOR 2 = p - 2. Brad Clardy, Oct 25 2011 (Misleading in the sense that this is a formula for the super-sequence A004767. - R. J. Mathar, Jul 28 2014)
It appears that each term of A004767 is the mean of two terms of this subsequence of primes therein; cf. A245203. - M. F. Hasler, Jul 13 2014
Numbers n > 2 such that ((n-2)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 24 2016
Odd numbers n > 1 such that ((n-1)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-2)!! == (p-3)!! (mod p). - Thomas Ordowski, Jul 28 2016
See Granville and Martin for a discussion of the relative numbers of primes of the form 4k+1 and 4k+3. - Editors, May 01 2017
Sometimes referred to as Blum primes for their connection to A016105 and the Blum Blum Shub generator. - Charles R Greathouse IV, Jun 14 2018
Conjecture: a(n) for n > 4 can be written as a sum of 3 primes of the form 4k+1, which would imply that primes of the form 4k+3 >= 23 can be decomposed into a sum of 6 nonzero squares. - Thomas Scheuerle, Feb 09 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Apart from initial term, same as A045326.
Cf. A016105.
Cf. A004614 (multiplicative closure).

Programs

  • Haskell
    a002145 n = a002145_list !! (n-1)
    a002145_list = filter ((== 1) . a010051) [3, 7 ..]
    -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
    
  • Magma
    [4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
    
  • Maple
    A002145 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            a := nextprime(procname(n-1)) ;
            while a mod 4 <>  3 do
                a := nextprime(a) ;
            end do;
            return a;
        end if;
    end proc:
    seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
  • Mathematica
    Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *)
    Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *)
    Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
  • PARI
    forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3]  # Peter Luschny, Jul 29 2014

Formula

Remove from A000040 terms that are in A002313.
Intersection of A000040 and A004767. - Alonso del Arte, Apr 22 2014
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020

Extensions

More terms from James Sellers, Apr 21 2000

A105133 Numbers n such that 8n + 5 is prime.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 12, 13, 18, 19, 21, 22, 24, 28, 33, 34, 36, 39, 43, 46, 48, 49, 52, 57, 63, 67, 69, 76, 81, 82, 84, 87, 88, 91, 94, 96, 99, 102, 103, 106, 109, 117, 124, 126, 127, 132, 133, 136, 138, 139, 147, 151, 153, 154, 159, 162, 171, 172, 178, 181, 186, 193, 199, 201, 202
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(8*n+5)];  // Vincenzo Librandi, Jan 07 2013
    
  • Maple
    M:=500; f:=proc(n) local t1,t2; t1:=[]; for k from 0 to M do t2:=2^n*k+2^(n-1)+1; if isprime(t2) then t1:=[op(t1),k]; fi; od; t1; end; f(3);
  • Mathematica
    Select[Range[0, 300], PrimeQ[8 # + 5]&] (* Vincenzo Librandi, Jan 07 2013 *)
  • PARI
    is(n)=isprime(8*n+5) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A007521(n)-5)/8. - Zak Seidov, Sep 08 2015

A095277 Numbers k such that 4k + 3 is composite.

Original entry on oeis.org

3, 6, 8, 9, 12, 13, 15, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 42, 43, 45, 46, 48, 50, 51, 53, 54, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Comments

Terms can be written as (4xy +- (x-y)) - 1 for x > 0, y > 0. - Ron R Spencer, Aug 01 2016
Numbers k such that (4*k)!/(4*k + 3) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the positive terms in the following triangular array:
  *;
  3,  *;
  *,  8,  *;
  6,  *, 15,  *;
  *, 13,  *, 24,  *;
  9,  *, 22,  *, 35,  *;
  *, 18,  *, 33,  *, 48,  *;
etc., where * marks the noninteger values of (2*h*k + k + h-1)/2 with h >= k >= 1. - _Vincenzo Librandi_, Apr 22 2014
		

Crossrefs

Complement of A095278. Cf. also A045751, A014076, A153170, A153088, A153329, A153343.

Programs

  • Magma
    [n: n in [0..110] |not IsPrime(4*n+3)]; // Vincenzo Librandi, Apr 22 2014\
    
  • Maple
    for n from 0 to 100 do
    if irem(factorial(4*n), 4*n+3) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[150],!PrimeQ[4#+3]&] (* Harvey P. Dale, Jul 04 2011 *)
  • PARI
    is(n)=!isprime(4*n+3) \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = (A091236(n) - 3)/4.

A123986 Numbers n for which 4n+1 and 4n+3 are primes.

Original entry on oeis.org

1, 4, 7, 10, 25, 34, 37, 49, 67, 70, 115, 130, 142, 154, 160, 202, 205, 214, 220, 262, 265, 307, 319, 322, 325, 370, 424, 430, 469, 487, 499, 520, 532, 535, 559, 577, 595, 637, 664, 682, 697, 700, 742, 814, 832, 847, 865, 889, 895, 955, 979, 982, 1000, 1012, 1039
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Comments

All terms == 1 mod 3. - Zak Seidov, Dec 02 2011
Intersection of A005098 and A095278. - Michel Marcus, Jan 31 2015

Crossrefs

Programs

  • Magma
    [n: n in [0..1100] |IsPrime(4*n+1) and IsPrime(4*n+3)]; // Vincenzo Librandi, Feb 01 2015
  • Mathematica
    Select[Range[1100], And @@ PrimeQ /@ ({1, 3} + 4#) &] (* Ray Chandler, Nov 05 2006 *)
    nn=10000;k=0;x=1;re=Reap[While[kZak Seidov, Dec 02 2011 *)

Extensions

Extended by Ray Chandler, Nov 05 2006

A105140 Numbers n such that 1024n+513 is prime.

Original entry on oeis.org

7, 10, 11, 17, 22, 25, 31, 35, 44, 50, 65, 74, 79, 82, 85, 94, 100, 109, 110, 112, 115, 116, 122, 130, 140, 149, 151, 154, 155, 157, 164, 166, 172, 179, 206, 211, 214, 215, 221, 227, 229, 232, 245, 254, 256, 259, 269, 271, 277, 280, 281, 292, 295, 296, 299, 316, 322, 332
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

A111199 Numbers k such that 4k + 9 is prime.

Original entry on oeis.org

1, 2, 5, 7, 8, 11, 13, 16, 20, 22, 23, 25, 26, 32, 35, 37, 41, 43, 46, 47, 55, 56, 58, 62, 65, 67, 68, 71, 76, 77, 82, 85, 86, 91, 95, 97, 98, 100, 103, 106, 110, 112, 113, 125, 128, 133, 137, 140, 142, 146, 148, 151, 152, 158, 161, 163, 166, 167, 173, 175, 181, 187
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 24 2005

Keywords

Examples

			For k=98, 4*k + 9 = 401 (prime).
		

Crossrefs

Programs

Formula

a(n) = A005098(n+1) - 2. - R. J. Mathar, Sep 23 2009

Extensions

More terms from R. J. Mathar, Sep 23 2009

A089986 Numbers n such that 4n + 7 is prime.

Original entry on oeis.org

-1, 0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 19, 24, 25, 30, 31, 33, 36, 39, 40, 43, 46, 48, 51, 54, 55, 58, 61, 64, 66, 69, 75, 76, 81, 85, 88, 90, 93, 94, 103, 106, 108, 109, 114, 115, 118, 120, 121, 123, 124, 129, 135, 139, 141, 145, 148, 150, 153, 156, 159, 160, 163, 169
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 13 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Cf. A005099 ((( Primes = -1 mod 4 ) + 1)/4), A005098 (4n+1 is prime), A095278 (4n+3 is prime), A111215 (4n+5 is prime).

Programs

Formula

a(n) = A005099(n) - 2 = A095278(n) - 1.

Extensions

Edited and extended by Klaus Brockhaus, Dec 22 2008

A095272 a(n) = (A095102(n)-3)/4.

Original entry on oeis.org

0, 1, 2, 5, 7, 11, 14, 17, 19, 20, 25, 32, 37, 41, 47, 49, 59, 62, 65, 67, 77, 89, 95, 104, 107, 109, 119, 125, 140, 149, 151, 161, 164, 179, 185, 187, 209, 215, 221, 227, 229, 242, 245, 247, 257, 259, 265, 272, 275, 287, 305, 307, 319, 329, 349
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Complement of A095273 in A095278, subset of A095274.

A095273 a(n) = (A095103(n)-3)/4.

Original entry on oeis.org

4, 10, 16, 26, 31, 34, 40, 44, 52, 55, 56, 70, 76, 82, 86, 91, 94, 110, 115, 116, 121, 122, 124, 130, 136, 142, 146, 154, 157, 160, 170, 172, 181, 184, 196, 202, 205, 206, 214, 220, 226, 236, 241, 254, 262, 271, 280, 290, 292, 296, 314, 320, 322
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Complement of A095272 in A095278, subset of A095275.

A111215 Numbers k such that 4k + 5 is prime.

Original entry on oeis.org

0, 2, 3, 6, 8, 9, 12, 14, 17, 21, 23, 24, 26, 27, 33, 36, 38, 42, 44, 47, 48, 56, 57, 59, 63, 66, 68, 69, 72, 77, 78, 83, 86, 87, 92, 96, 98, 99, 101, 104, 107, 111, 113, 114, 126, 129, 134, 138, 141, 143, 147, 149, 152, 153, 159, 162, 164, 167, 168, 174, 176, 182, 188
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 24 2005

Keywords

Examples

			If k=99 then 4k + 5 = 401 (prime).
		

Crossrefs

Programs

Formula

a(n) = A005098(n) - 1. - Daniel Starodubtsev, Feb 10 2020
Showing 1-10 of 29 results. Next