cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000073 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591, 29249425, 53798080, 98950096, 181997601, 334745777, 615693474, 1132436852
Offset: 0

Views

Author

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Also (for n > 1) number of ordered trees with n+1 edges and having all leaves at level three. Example: a(4)=2 because we have two ordered trees with 5 edges and having all leaves at level three: (i) one edge emanating from the root, at the end of which two paths of length two are hanging and (ii) one path of length two emanating from the root, at the end of which three edges are hanging. - Emeric Deutsch, Jan 03 2004
a(n) is the number of compositions of n-2 with no part greater than 3. Example: a(5)=4 because we have 1+1+1 = 1+2 = 2+1 = 3. - Emeric Deutsch, Mar 10 2004
Let A denote the 3 X 3 matrix [0,0,1;1,1,1;0,1,0]. a(n) corresponds to both the (1,2) and (3,1) entries in A^n. - Paul Barry, Oct 15 2004
Number of permutations satisfying -k <= p(i)-i <= r, i=1..n-2, with k=1, r=2. - Vladimir Baltic, Jan 17 2005
Number of binary sequences of length n-3 that have no three consecutive 0's. Example: a(7)=13 because among the 16 binary sequences of length 4 only 0000, 0001 and 1000 have 3 consecutive 0's. - Emeric Deutsch, Apr 27 2006
Therefore, the complementary sequence to A050231 (n coin tosses with a run of three heads). a(n) = 2^(n-3) - A050231(n-3) - Toby Gottfried, Nov 21 2010
Convolved with the Padovan sequence = row sums of triangle A153462. - Gary W. Adamson, Dec 27 2008
For n > 1: row sums of the triangle in A157897. - Reinhard Zumkeller, Jun 25 2009
a(n+2) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 0, 0, 1; 1, 0, 0] or [1, 1, 0; 1, 0, 1; 1, 0, 0] or [1, 1, 1; 1, 0, 0; 0, 1, 0] or [1, 0, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
a(n-1) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 0, 1; 1, 1, 1; 0, 1, 0], [0, 1, 0; 0, 1, 1; 1, 1, 0], [0, 0, 1; 1, 0, 1; 0, 1, 1] or [0, 1, 0; 0, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Also row sums of A082601 and of A082870. - Reinhard Zumkeller, Apr 13 2014
Least significant bits are given in A021913 (a(n) mod 2 = A021913(n)). - Andres Cicuttin, Apr 04 2016
The nonnegative powers of the tribonacci constant t = A058265 are t^n = a(n)*t^2 + (a(n-1) + a(n-2))*t + a(n-1)*1, for n >= 0, with a(-1) = 1 and a(-2) = -1. This follows from the recurrences derived from t^3 = t^2 + t + 1. See the example in A058265 for the first nonnegative powers. For the negative powers see A319200. - Wolfdieter Lang, Oct 23 2018
The term "tribonacci number" was coined by Mark Feinberg (1963), a 14-year-old student in the 9th grade of the Susquehanna Township Junior High School in Pennsylvania. He died in 1967 in a motorcycle accident. - Amiram Eldar, Apr 16 2021
Andrews, Just, and Simay (2021, 2022) remark that it has been suggested that this sequence is mentioned in Charles Darwin's Origin of Species as bearing the same relation to elephant populations as the Fibonacci numbers do to rabbit populations. - N. J. A. Sloane, Jul 12 2022

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + 24*x^8 + 44*x^9 + 81*x^10 + ...
		

References

  • M. Agronomof, Sur une suite récurrente, Mathesis (Series 4), Vol. 4 (1914), pp. 125-126.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045, A000078, A000213, A000931, A001590 (first differences, also a(n)+a(n+1)), A001644, A008288 (tribonacci triangle), A008937 (partial sums), A021913, A027024, A027083, A027084, A046738 (Pisano periods), A050231, A054668, A062544, A063401, A077902, A081172, A089068, A118390, A145027, A153462, A230216.
A057597 is this sequence run backwards: A057597(n) = a(1-n).
Row 3 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
Partitions: A240844 and A117546.
Cf. also A092836 (subsequence of primes), A299399 = A092835 + 1 (indices of primes).

Programs

  • GAP
    a:=[0,0,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
  • Haskell
    a000073 n = a000073_list !! n
    a000073_list = 0 : 0 : 1 : zipWith (+) a000073_list (tail
                              (zipWith (+) a000073_list $ tail a000073_list))
    -- Reinhard Zumkeller, Dec 12 2011
    
  • Magma
    [n le 3 select Floor(n/3) else Self(n-1)+Self(n-2)+Self(n-3): n in [1..70]]; // Vincenzo Librandi, Jan 29 2016
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1,3]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 19 2016
    # second Maple program:
    A000073:=proc(n) option remember; if n <= 1 then 0 elif n=2 then 1 else procname(n-1)+procname(n-2)+procname(n-3); fi; end; # N. J. A. Sloane, Aug 06 2018
  • Mathematica
    CoefficientList[Series[x^2/(1 - x - x^2 - x^3), {x, 0, 50}], x]
    a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Array[a, 36, 0] (* Robert G. Wilson v, Nov 07 2010 *)
    LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *)
    a[n_] := SeriesCoefficient[If[ n < 0, x/(1 + x + x^2 - x^3), x^2/(1 - x - x^2 - x^3)], {x, 0, Abs @ n}] (* Michael Somos, Jun 01 2013 *)
    Table[-RootSum[-1 - # - #^2 + #^3 &, -#^n - 9 #^(n + 1) + 4 #^(n + 2) &]/22, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)
  • Maxima
    A000073[0]:0$
    A000073[1]:0$
    A000073[2]:1$
    A000073[n]:=A000073[n-1]+A000073[n-2]+A000073[n-3]$
      makelist(A000073[n], n, 0, 40);  /* Emanuele Munarini, Mar 01 2011 */
    
  • PARI
    {a(n) = polcoeff( if( n<0, x / ( 1 + x + x^2 - x^3), x^2 / ( 1 - x - x^2 - x^3) ) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Sep 03 2007 */
    
  • PARI
    my(x='x+O('x^99)); concat([0, 0], Vec(x^2/(1-x-x^2-x^3))) \\ Altug Alkan, Apr 04 2016
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 18 2016, simplified by M. F. Hasler, Apr 18 2018
    
  • Python
    def a(n, adict={0:0, 1:0, 2:1}):
        if n in adict:
            return adict[n]
        adict[n]=a(n-1)+a(n-2)+a(n-3)
        return adict[n] # David Nacin, Mar 07 2012
    from functools import cache
    @cache
    def A000073(n: int) -> int:
        if n <= 1: return 0
        if n == 2: return 1
        return A000073(n-1) + A000073(n-2) + A000073(n-3) # Peter Luschny, Nov 21 2022
    

Formula

G.f.: x^2/(1 - x - x^2 - x^3).
G.f.: x^2 / (1 - x / (1 - x / (1 + x^2 / (1 + x)))). - Michael Somos, May 12 2012
G.f.: Sum_{n >= 0} x^(n+2) *[ Product_{k = 1..n} (k + k*x + x^2)/(1 + k*x + k*x^2) ] = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + ... may be proved by the method of telescoping sums. - Peter Bala, Jan 04 2015
a(n+1)/a(n) -> A058265. a(n-1)/a(n) -> A192918.
a(n) = central term in M^n * [1 0 0] where M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 1]. (M^n * [1 0 0] = [a(n-1) a(n) a(n+1)].) a(n)/a(n-1) tends to the tribonacci constant, 1.839286755... = A058265, an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n+2) = Sum_{k=0..n} T(n-k, k), where T(n, k) = trinomial coefficients (A027907). - Paul Barry, Feb 15 2005
A001590(n) = a(n+1) - a(n); A001590(n) = a(n-1) + a(n-2) for n > 1; a(n) = (A000213(n+1) - A000213(n))/2; A000213(n-1) = a(n+2) - a(n) for n > 0. - Reinhard Zumkeller, May 22 2006
Let C = the tribonacci constant, 1.83928675...; then C^n = a(n)*(1/C) + a(n+1)*(1/C + 1/C^2) + a(n+2)*(1/C + 1/C^2 + 1/C^3). Example: C^4 = 11.444...= 2*(1/C) + 4*(1/C + 1/C^2) + 7*(1/C + 1/C^2 + 1/C^3). - Gary W. Adamson, Nov 05 2006
a(n) = j*C^n + k*r1^n + L*r2^n where C is the tribonacci constant (C = 1.8392867552...), real root of x^3-x^2-x-1=0, and r1 and r2 are the two other roots (which are complex), r1 = m+p*i and r2 = m-p*i, where i = sqrt(-1), m = (1-C)/2 (m = -0.4196433776...) and p = ((3*C-5)*(C+1)/4)^(1/2) = 0.6062907292..., and where j = 1/((C-m)^2 + p^2) = 0.1828035330..., k = a+b*i, and L = a-b*i, where a = -j/2 = -0.0914017665... and b = (C-m)/(2*p*((C-m)^2 + p^2)) = 0.3405465308... . - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) = 3*c*((1/3)*(a+b+1))^n/(c^2-2*c+4) where a=(19+3*sqrt(33))^(1/3), b=(19-3*sqrt(33))^(1/3), c=(586+102*sqrt(33))^(1/3). Round to the nearest integer. - Al Hakanson (hawkuu(AT)gmail.com), Feb 02 2009
a(n) = round(3*((a+b+1)/3)^n/(a^2+b^2+4)) where a=(19+3*sqrt(33))^(1/3), b=(19-3*sqrt(33))^(1/3).. - Anton Nikonov
Another form of the g.f.: f(z) = (z^2-z^3)/(1-2*z+z^4). Then we obtain a(n) as a sum: a(n) = Sum_{i=0..floor((n-2)/4)} ((-1)^i*binomial(n-2-3*i,i)*2^(n-2-4*i)) - Sum_{i=0..floor((n-3)/4)} ((-1)^i*binomial(n-3-3*i,i)*2^(n-3-4*i)) with natural convention: Sum_{i=m..n} alpha(i) = 0 for m > n. - Richard Choulet, Feb 22 2010
a(n+2) = Sum_{k=0..n} Sum_{i=k..n, mod(4*k-i,3)=0} binomial(k,(4*k-i)/3)*(-1)^((i-k)/3)*binomial(n-i+k-1,k-1). - Vladimir Kruchinin, Aug 18 2010
a(n) = 2*a(n-2) + 2*a(n-3) + a(n-4). - Gary Detlefs, Sep 13 2010
Sum_{k=0..2*n} a(k+b)*A027907(n,k) = a(3*n+b), b >= 0 (see A099464, A074581).
a(n) = 2*a(n-1) - a(n-4), with a(0)=a(1)=0, a(2)=a(3)=1. - Vincenzo Librandi, Dec 20 2010
Starting (1, 2, 4, 7, ...) is the INVERT transform of (1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, May 13 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x + x^2)/( x*(4*k+3 + x + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
a(n+2) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2*j,k)*binomial(j,k)*2^k. - Tony Foster III, Sep 08 2017
Sum_{k=0..n} (n-k)*a(k) = (a(n+2) + a(n+1) - n - 1)/2. See A062544. - Yichen Wang, Aug 20 2020
a(n) = A008937(n-1) - A008937(n-2) for n >= 2. - Peter Luschny, Aug 20 2020
From Yichen Wang, Aug 27 2020: (Start)
Sum_{k=0..n} a(k) = (a(n+2) + a(n) - 1)/2. See A008937.
Sum_{k=0..n} k*a(k) = ((n-1)*a(n+2) - a(n+1) + n*a(n) + 1)/2. See A337282. (End)
For n > 1, a(n) = b(n) where b(1) = 1 and then b(n) = Sum_{k=1..n-1} b(n-k)*A000931(k+2). - J. Conrad, Nov 24 2022
Conjecture: the congruence a(n*p^(k+1)) + a(n*p^k) + a(n*p^(k-1)) == 0 (mod p^k) holds for positive integers k and n and for all the primes p listed in A106282. - Peter Bala, Dec 28 2022
Sum_{k=0..n} k^2*a(k) = ((n^2-4*n+6)*a(n+1) - (2*n^2-2*n+5)*a(n) + (n^2-2*n+3)*a(n-1) - 3)/2. - Prabha Sivaramannair, Feb 10 2024
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(3*r^2-2*r-1). - Fabian Pereyra, Nov 23 2024

Extensions

Minor edits by M. F. Hasler, Apr 18 2018
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A120987 Triangle read by rows: T(n,k) is the number of ternary words of length n with k strictly increasing runs (0 <= k <= n; for example, the ternary word 2|01|12|02|1|1|012|2 has 8 strictly increasing runs).

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 16, 10, 0, 0, 15, 51, 15, 0, 0, 6, 90, 126, 21, 0, 0, 1, 77, 357, 266, 28, 0, 0, 0, 36, 504, 1107, 504, 36, 0, 0, 0, 9, 414, 2304, 2907, 882, 45, 0, 0, 0, 1, 210, 2850, 8350, 6765, 1452, 55, 0, 0, 0, 0, 66, 2277, 14355, 25653, 14355, 2277, 66, 0, 0, 0, 0, 12
Offset: 0

Views

Author

Emeric Deutsch, Jul 23 2006

Keywords

Comments

Sum of entries in row n is 3^n (A000244).
Sum of entries in column k is A099464(k+1) (a trisection of the tribonacci numbers).
Row n contains 1 + floor(2n/3) nonzero terms.
T(n,n) = (n+1)*(n+2)/2 (the triangular numbers (A000217)).
Sum_{k=0..n} k*T(n,k) = (2n+1)*3^(n-1) = 3*A081038(n-1) for n >= 1.
T(n,k) = A120987(n,n-k).

Examples

			T(5,2) = 6 because we have 012|01, 012|02, 012|12, 01|012, 02|012 and 12|012 (the runs are separated by |).
Triangle starts:
  1;
  0,   3;
  0,   3,   6;
  0,   1,  16,  10;
  0,   0,  15,  51,  15;
  0,   0,   6,  90, 126,  21;
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 24, p. 154.

Crossrefs

Nb(s,2,q) = A027907(q,s). - Giuliano Cabrele, Dec 11 2015

Programs

  • Maple
    G:=1/(1-3*t*z-3*t*(1-t)*z^2-t*(1-t)^2*z^3): Gser:=simplify(series(G,z=0,33)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Sum[(-1)^j*Binomial[n + 1, j]*Binomial[3 k - 3 j, n], {j, 0, k}], {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, Dec 20 2015 *)
  • MuPAD
    // binomial c. defined as in linked document
    Cb:=(x,m)->if(0<=m and is(m in Z), binomial(x,m), 0):
    // closed formula derived and proved in the linked document
    // Qsc(r,q,m) with r=2
    T(n,k):=(n,k)->_plus((-1)^(k-j)*Cb(n+1,k-j)*Cb(3*j, n)$j=0..k):
    // Giuliano Cabrele, Dec 11 2015

Formula

T(n,k) = trinomial(n+1,3n-3k+2) = trinomial(n+1,3k-n) (conjecture).
G.f.: 1/(1-3tz-3t(1-t)z^2-t(1-t)^2*z^3).
Can anyone prove the conjecture (either from the g.f. or combinatorially from the definition)?
From Giuliano Cabrele, Mar 02 2008: (Start)
The conjecture is compatible with the g.f., which can be rewritten as (1-t)/(1-t(1+(1-t)z)^3) and expanded to give T(n,k) = Sum_{j=0..k} (-1)^(k-j)*C(3j, n)*C(n+1, k-j) = Sum_{j=0..k} (-1)^j*C(n+1,j)*C(3k-3j,n) = trinomial(n+1,3k-n) = A027907(n+1,3k-n).
Also (1-t)/(1-t(1+(1-t)z)^2) equals the g.f. for the case of binary words, A119900, where Sum_{j=0..k} (-1)^(k-j)*C(2j,n)*C(n+1,k-j) = C(n+1,2k-n). Changing the exponent to 1 gives 1/(1-zt), the g.f. for the case of unary words, the expansion coefficients of which can be written as Kronecker delta(k-n)^(n+1) = Sum_{j=0..k} (-1)^(k-j)*C(j, n)*C(n+1,k-j).
So the conjecture shifts to that the g.f. is (1-t)/(1-t(1+(1-t)z)^m) and coefficients T(m,n,k) = Sum_{j=0..k} (-1)^(k-j)*C(mj,n)*C(n+1, k-j) may apply to the general case of m-ary words. (End)
Sum_{k=0..n} T(n,k) *(-1)^(n-k) = A157241(n+1). - Philippe Deléham, Oct 25 2011
The generalized conjecture above can in fact be proved, as described in the file "Words Partitioned according to Number of Strictly Increasing Runs" linked above. - Giuliano Cabrele, Dec 11 2015

A192806 a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3), with initial values a(0) = a(1) = 1, a(2)=4.

Original entry on oeis.org

1, 1, 4, 24, 149, 927, 5768, 35890, 223317, 1389537, 8646064, 53798080, 334745777, 2082876103, 12960201916, 80641778674, 501774317241, 3122171529233, 19426970897100, 120879712950776, 752145307699165, 4680045560037375, 29120472094716576
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

Old definition was "Constant term in the reduction of (x^2+x+1)^n by x^3 -> x^2+x+1." For discussions of polynomial reduction, see A192232 and A192744.
From Bob Selcoe, Jun 10 2014: (Start)
a(n) is the trinomial transform of tribonacci numbers. (i.e., A027907(n) transform of A000073(n+2)).
Let the m-nacci numbers be denoted by M"(n). Examples: Fibonacci numbers are 2"(n); tribonacci numbers are 3"(n); 137-nacci numbers are 137"(n). Then the m-nomial transform of M" is M"(m*n), where M"(0)=1 and M"(n)=0 when n<0. Therefore a(n) = 3"(3n). (End)

Examples

			G.f. = 1 + x + 4*x^2 + 24*x^3 + 149*x^4 + 927*x^5 + 5768*x^6 + ...
		

Crossrefs

Programs

  • GAP
    a:=[1,1,4];; for n in [4..25] do a[n]:=7*a[n-1]-5*a[n-2]+a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-6*x+2*x^2)/(1-7*x+5*x^2-x^3) )); // G. C. Greubel, Jan 02 2019
    
  • Mathematica
    q = x^3; s = x^2 + x + 1; z = 40;
    p[n_, x_] := (x^2 + x + 1)^n;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192806 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192807 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]   (* A099464 *)
    LinearRecurrence[{7,-5,1}, {1,1,4}, 50] (* G. C. Greubel, Jan 02 2019 *)
  • PARI
    {a(n) = polcoeff( lift( (1 + x + x^2)^n * Mod(1, x^3 - x^2 - x - 1)), 0)}; /* Michael Somos, Jun 17 2014 */
    
  • PARI
    my(x='x+O('x^30)); Vec((1-6*x+2*x^2)/(1-7*x+5*x^2-x^3)) \\ G. C. Greubel, Jan 02 2019
    
  • Sage
    ((1-6*x+2*x^2)/(1-7*x+5*x^2-x^3)).series(x,20).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
    

Formula

G.f.: (1 - 6*x + 2*x^2)/(1 - 7*x + 5*x^2 - x^3). - R. J. Mathar, May 06 2014
a(n) = A000073(3n+2), n>0. - Bob Selcoe, Jun 10 2014

Extensions

Edited by N. J. A. Sloane, Jun 03 2018

A192807 Coefficient of x in the reduction of the polynomial (x^2 + x + 1)^n by x^3 -> x^2 + x + 1.

Original entry on oeis.org

0, 1, 6, 37, 230, 1431, 8904, 55403, 344732, 2145013, 13346834, 83047505, 516743378, 3215312955, 20006521300, 124485827703, 774583500376, 4819661885417, 29989201523742, 186600684739485, 1161078447443102, 7224534909928031
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    a:=[0,1,6];; for n in [4..25] do a[n]:=7*a[n-1]-5*a[n-2]+a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(x-1)/(x^3-5*x^2+7*x-1) )); // G. C. Greubel, Jan 02 2019
    
  • Mathematica
    (See A192806.)
    LinearRecurrence[{7,-5,1},{0,1,6},30] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(x-1)/(x^3-5*x^2+7*x-1))) \\ G. C. Greubel, Jan 02 2019
    
  • Sage
    (x*(x-1)/(x^3-5*x^2+7*x-1)).series(x,30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
    

Formula

a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3).
G.f.: x*(x - 1)/(x^3 - 5*x^2 + 7*x - 1). - Colin Barker, Nov 23 2012
Showing 1-4 of 4 results.