cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A008480 Number of ordered prime factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 6, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 12, 1, 2, 3, 1, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 3, 3, 2, 6, 1, 5, 1, 2, 1, 12, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on the prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).
Multinomial coefficients in prime factorization order. - Max Alekseyev, Nov 07 2006
The Dirichlet inverse is given by A080339, negating all but the A080339(1) element in A080339. - R. J. Mathar, Jul 15 2010
Number of (distinct) permutations of the multiset of prime factors. - Joerg Arndt, Feb 17 2015
Number of not divisible chains in the divisor lattice of n. - Peter Luschny, Jun 15 2013

References

  • A. Knopfmacher, J. Knopfmacher, and R. Warlimont, "Ordered factorizations for integers and arithmetical semigroups", in Advances in Number Theory, (Proc. 3rd Conf. Canadian Number Theory Assoc., 1991), Clarendon Press, Oxford, 1993, pp. 151-165.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.

Crossrefs

Cf. A124010, record values and where they occur: A260987, A260633.
Absolute values of A355939.

Programs

  • Haskell
    a008480 n = foldl div (a000142 $ sum es) (map a000142 es)
                where es = a124010_row n
    -- Reinhard Zumkeller, Nov 18 2015
    
  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 26 2018
  • Mathematica
    Prepend[ Array[ Multinomial @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]
    (* Second program: *)
    a[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Total[ee]!/Times @@ (ee!)]; Array[a, 101] (* Jean-François Alcover, Sep 15 2019 *)
  • PARI
    a(n)={my(sig=factor(n)[,2]); vecsum(sig)!/vecprod(apply(k->k!, sig))} \\ Andrew Howroyd, Nov 17 2018
    
  • Python
    from math import prod, factorial
    from sympy import factorint
    def A008480(n): return factorial(sum(f:=factorint(n).values()))//prod(map(factorial,f)) # Chai Wah Wu, Aug 05 2023
  • Sage
    def A008480(n):
        S = [s[1] for s in factor(n)]
        return factorial(sum(S)) // prod(factorial(s) for s in S)
    [A008480(n) for n in (1..101)]  # Peter Luschny, Jun 15 2013
    

Formula

If n = Product (p_j^k_j) then a(n) = ( Sum (k_j) )! / Product (k_j !).
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of primes.
a(p^k) = 1 if p is a prime.
a(A002110(n)) = A000142(n) = n!.
a(n) = A050382(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, May 26 2018
G.f. A(x) satisfies: A(x) = x + A(x^2) + A(x^3) + A(x^5) + ... + A(x^prime(k)) + ... - Ilya Gutkovskiy, May 10 2019
a(n) = C(k, n) for k = A001222(n) where C(k, n) is defined as the k-fold Dirichlet convolution of A001221(n) with itself, and where C(0, n) is the multiplicative identity with respect to Dirichlet convolution.
The average order of a(n) is asymptotic (up to an absolute constant) to 2A sqrt(2*Pi) log(n) / sqrt(log(log(n))) for some absolute constant A > 0. - Maxie D. Schmidt, May 28 2021
The sums of a(n) for n <= x and k >= 1 such that A001222(n)=k have asymptotic order of the form x*(log(log(x)))^(k+1/2) / ((2k+1) * (k-1)!). - Maxie D. Schmidt, Feb 12 2021
Other DGFs include: (1+P(s))^(-1) in terms of the prime zeta function for Re(s) > 1 where the + version weights the sequence by A008836(n), see the reference by Fröberg on P(s). - Maxie D. Schmidt, Feb 12 2021
The bivariate DGF (1+zP(s))^(-1) has coefficients a(n) / n^s (-1)^(A001221(n)) z^(A001222(n)) for Re(s) > 1 and 0 < |z| < 2 - Maxie D. Schmidt, Feb 12 2021
The distribution of the distinct values of the sequence for n<=x as x->infinity satisfy a CLT-type Erdős-Kac theorem analog proved by M. D. Schmidt, 2021. - Maxie D. Schmidt, Feb 12 2021
a(n) = abs(A355939(n)). - Antti Karttunen and Vaclav Kotesovec, Jul 22 2022
a(n) = A130675(n)/A112624(n). - Amiram Eldar, Mar 08 2024

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007

A036039 Irregular triangle of multinomial coefficients of integer partitions read by rows (in Abramowitz and Stegun ordering) giving the coefficients of the cycle index polynomials for the symmetric groups S_n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 40, 90, 120, 15, 40, 45, 15, 1, 720, 840, 504, 420, 504, 630, 280, 210, 210, 420, 105, 70, 105, 21, 1, 5040, 5760, 3360, 2688, 1260, 3360, 4032, 3360, 1260, 1120, 1344, 2520, 1120, 1680, 105, 420, 1120, 420, 112, 210, 28, 1
Offset: 1

Views

Author

Keywords

Comments

The sequence of row lengths is A000041(n), n >= 1 (partition numbers).
Number of permutations whose cycle structure is the given partition. Row sums are factorials (A000142). - Franklin T. Adams-Watters, Jan 12 2006
A relation between partition polynomials formed from these "refined" Stirling numbers of the first kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
These cycle index polynomials for the symmetric group S_n are also related to a raising operator / infinitesimal generator for fractional integro-derivatives, involving the digamma function and the Riemann zeta function values at positive integers, and to the characteristic polynomial for the adjacency matrix of complete n-graphs A055137 (cf. MathOverflow link). - Tom Copeland, Nov 03 2012
In the Lang link, replace all x(n) by t to obtain A132393. Furthermore replace x(1) by t and all other x(n) by 1 to obtain A008290. See A274760. - Tom Copeland, Nov 06 2012, Oct 29 2015 - corrected by Johannes W. Meijer, Jul 28 2016
The umbral compositional inverses of these polynomials are formed by negating the indeterminates x(n) for n>1, i.e., P(n,P(.,x(1),-x(2),-x(3),...),x(2),x(3),...) = x(1)^n (cf. A130561 for an example of umbral compositional inversion). The polynomials are an Appell sequence in x(1), i.e., dP(n,x(1))/dx(1) = n P(n-1, x(1)) and (P(.,x)+y)^n=P(n,x+y) umbrally, with P(0,x(1))=1. - Tom Copeland, Nov 14 2014
Regarded as the coefficients of the partition polynomials listed by Lang, a signed version of these polynomials IF(n,b1,b2,...,bn) (n! times polynomial on page 184 of Airault and Bouali) provides an inversion of the Faber polynomials F(n,b1,b2,...,bn) (page 52 of Bouali, A263916, and A115131). For example, F(3, IF(1,b1), IF(2,b1,b2)/2!, IF(3,b1,b2,b3)/3!) = b3 and IF(3, F(1,b1), F(2,b1,b2), F(3,b1,b2,b3))/3! = b3 with F(1,b1) = -b1. (Compare with A263634.) - Tom Copeland, Oct 28 2015; Sep 09 2016
The e.g.f. for the row partition polynomials is Sum_{n>=0} P_n(b_1,...,b_n) x^n/n! = exp[Sum_{n>=1} b_n x^n/n], or, exp[P.(b_1,...,b_n)x] = exp[-], expressed umbrally with <"power series"> denoting umbral evaluation (b.)^n = b_n within the power series. This e.g.f. is central to the paper by Maxim and Schuermannn on characteristic classes (cf. Friedrich and McKay also). - Tom Copeland, Nov 11 2015
The elementary Schur polynomials are given by S(n,x(1),x(2),...,x(n)) = P(n,x(1), 2*x(2),...,n*x(n)) / n!. See p. 12 of Carrell. - Tom Copeland, Feb 06 2016
These partition polynomials are also related to the Casimir invariants associated to quantum density states on p. 3 of Boya and Dixit and pp. 5 and 6 of Byrd and Khaneja. - Tom Copeland, Jul 24 2017
With the indeterminates (x_1,x_2,x_3,...) = (t,-c_2*t,-c_3*t,...) with c_n >0, umbrally P(n,a.) = P(n,t)|{t^n = a_n} = 0 and P(j,a.)P(k,a.) = P(j,t)P(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A133932. - Tom Copeland, Feb 09 2018
For relation to the Witt symmetric functions, as well as the basic power, elementary, and complete symmetric functions, see the Borger link p. 295. For relations to diverse zeta functions, determinants, and paths on graphs, see the MathOverflow question Cycling Through the Zeta Garden. - Tom Copeland, Mar 25 2018
Chmutov et al. identify the partition polynomials of this entry with the one-part Schur polynomials and assert that any linear combination with constant coefficients of these polynomials is a tau function for the KP hierarchy. - Tom Copeland, Apr 05 2018
With the indeterminates in the partition polynomials assigned as generalized harmonic numbers, i.e., as partial sums of the Dirichlet series for the Riemann zeta function, zeta(n), for integer n > 1, sums of simple normalizations of these polynomials give either unity or simple sums of consecutive zeta(n) (cf. Hoffman). Other identities involving these polynomials can be found in the Choi reference in Hoffman's paper. - Tom Copeland, Oct 05 2019
On p. 39 of Ma Luo's thesis is the e.g.f. of rational functions r_n obtained through the (umbral) formula 1/(1-r.T) = exp[log(1+P.T)], a differently signed e.g.f. of this entry, where (P.)^n = P_n are Eisenstein elliptic functions. P. 38 gives the example of 4! * r_4 as the signed 4th row partition polynomial of this entry. This series is equated through a simple proportionality factor to the Zagier Jacobi form on p. 25. Recurrence relations for the P_n are given on p. 24 involving the normalized k-weight Eisenstein series G_k introduced on p. 23 and related to the Bernoulli numbers. - Tom Copeland, Oct 16 2019
The Chern characteristic classes or forms of complex vector bundles and the characteristic polynomials of curvature forms for a smooth manifold can be expressed in terms of this entry's partition polynomials with the associated traces, or power sum polynomials, as the indeterminates. The Chern character is the e.g.f. of these traces and so its coefficients are given by the Faber polynomials with this entry's partition polynomials as the indeterminates. See the Mathoverflow question "A canonical reference for Chern characteristic classes". - Tom Copeland, Nov 04 2019
For an application to the physics of charged fermions in an external field, see Figueroa et al. - Tom Copeland, Dec 05 2019
Konopelchenko, in Proposition 5.2, p. 19, defines an operator P_k that is a differently signed operator version of the partition polynomials of this entry divided by a factorial. These operators give rise to bilinear Hirota equations for the KP hierarchy. These partition polynomials are also presented in Hopf algebras of symmetric functions by Cartier. - Tom Copeland, Dec 18 2019
For relationship of these partition polynomials to calculations of Pontryagin classes and the Riemann xi function, see A231846. - Tom Copeland, May 27 2020
Luest and Skliros summarize on p. 298 many of the properties of the cycle index polynomials given here; and Bianchi and Firrotta, a few on p. 6. - Tom Copeland, Oct 15 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			The partition array T(n, k) begins (see the W. Lang link for rows 1..10):
  n\k   1    2    3    4    5    6    7    8    9   10   11  12   13  14 15 ...
  1:    1
  2:    1    1
  3:    2    3    1
  4:    6    8    3    6    1
  5:   24   30   20   20   15   10    1
  6:  120  144   90   40   90  120   15   40   45   15    1
  7:  720  840  504  420  504  630  280  210  210  420  105  70  105  21  1
... reformatted by _Wolfdieter Lang_, May 25 2019
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2".

Crossrefs

Cf. other versions based on different partition orderings: A102189 (rows reversed), A181897, A319192.
Cf. A133932.
Cf. A231846.
Cf. A127671.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036039(n, m) := n!/ (mul((t)^q(t)*q(t)!, t=1..n)); od: od: seq(seq(A036039(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
    # 2nd program:
    A036039 := proc(n,k)
        local a,prts,e,ai ;
        a := n! ;
        # ASPrts is implemented in A119441
        prts := ASPrts(n)[k] ;
        ai := 1;
        for e from 1 to nops(prts) do
            if e>1 then
                if op(e,prts) = op(e-1,prts) then
                    ai := ai+1 ;
                else
                    ai := 1;
                end if;
            end if;
            a := a/(op(e,prts)*ai) ;
        end do:
        a ;
    end proc:
    seq(seq(A036039(n,k),k=1..combinat[numbpart](n)),n=1..15) ; # R. J. Mathar, Dec 18 2016
  • Mathematica
    aspartitions[n_]:=Reverse/@Sort[Sort/@IntegerPartitions[n]];(* Abramowitz & Stegun ordering *);
    ascycleclasses[n_Integer]:=n!/(Times@@ #)&/@((#!
    Range[n]^#)&/@Function[par,Count[par,# ]&/@Range[n]]/@aspartitions[n])
    (* The function "ascycleclasses" is then identical with A&S multinomial M2. *)
    Table[ascycleclasses[n], {n, 1, 8}] // Flatten
    (* Wouter Meeussen, Jun 26 2009, Jun 27 2009 *)
  • Sage
    def PartAS(n):
        P = []
        for k in (1..n):
            Q = [p.to_list() for p in Partitions(n, length=k)]
            for q in Q: q.reverse()
            P = P + sorted(Q)
        return P
    def A036039_row(n):
        fn, C = factorial(n), []
        for q in PartAS(n):
            q.reverse()
            p = Partition(q)
            fp = 1; pf = 1
            for a, c in p.to_exp_dict().items():
                fp *= factorial(c)
                pf *= factorial(a)**c
            co = fn//(fp*pf)
            C.append(co*prod([factorial(i-1) for i in p]))
        return C
    for n in (1..10):
        print(A036039_row(n)) # Peter Luschny, Dec 18 2016

Formula

T(n,k) = n!/Product_{j=1..n} j^a(n,k,j)*a(n,k,j)!, with the k-th partition of n >= 1 in Abromowitz-Stegun order written as Product_{j=1..n} j^a(n,k,j) with nonnegative integers a(n,k,j) satisfying Sum_{j=1..n} j*a(n,k,j) = n, and the number of parts is Sum_{j=1..n} a(n,k,j) =: m(n,k). - Wolfdieter Lang, May 25 2019
Raising and lowering operators are given for the partition polynomials formed from this sequence in the link in "Lagrange a la Lah Part I" on p. 23. - Tom Copeland, Sep 18 2011
From Szabo p. 34, with b_n = q^n / (1-q^n)^2, the partition polynomials give an expansion of the MacMahon function M(q) = Product_{n>=1} 1/(1-q^n)^n = Sum_{n>=0} PL(n) q^n, the generating function for PL(n) = n! P_n(b_1,...,b_n), the number of plane partitions with sum n. - Tom Copeland, Nov 11 2015
From Tom Copeland, Nov 18 2015: (Start)
The partition polynomials of A036040 are obtained by substituting x[n]/(n-1)! for x[n] in the partition polynomials of this entry.
CIP_n(t-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = P_n(b1,...,bn;t), where CIP_n are the partition polynomials of this entry; F(n,...), those of A263916; and P_n, those defined in my formula in A094587, e.g., P_2(b1,b2;t) = 2 b2 + 2 b1 t + t^2.
CIP_n(-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = n! bn. (End)
From the relation to the elementary Schur polynomials given in A130561 and above, the partition polynomials of this array satisfy (d/d(x_m)) P(n,x_1,...,x_n) = (1/m) * (n!/(n-m)!) * P(n-m,x_1,...,x_(n-m)) with P(k,...) = 0 for k<0. - Tom Copeland, Sep 07 2016
Regarded as Appell polynomials in the indeterminate x(1)=u, the partition polynomials of this entry P_n(u) obey d/du P_n(u) = n * P_{n-1}(u), so the abscissas for the zeros of P_n(u) are the same as those of the extrema of P{n+1}(u). In addition, the coefficient of u^{n-1} in P_{n}(u) is zero since these polynomials are related to the characteristic polynomials of matrices with null main diagonals, and, therefore, the trace is zero, further implying the abscissa for any zero is the negative of the sum of the abscissas of the remaining zeros. This assumes all zeros are distinct and real. - Tom Copeland, Nov 10 2019

Extensions

More terms from David W. Wilson
Title expanded by Tom Copeland, Oct 15 2020

A126074 Triangle read by rows: T(n,k) is the number of permutations of n elements that have the longest cycle length k.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 40, 30, 24, 1, 75, 200, 180, 144, 120, 1, 231, 980, 1260, 1008, 840, 720, 1, 763, 5152, 8820, 8064, 6720, 5760, 5040, 1, 2619, 28448, 61236, 72576, 60480, 51840, 45360, 40320, 1, 9495, 162080, 461160, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1

Views

Author

Dan Dima, Mar 01 2007

Keywords

Comments

Sum of the n-th row is the number of all permutations of n elements: Sum_{k=1..n, T(n,k)} = n! = A000142(n) We can extend T(n,k)=0, if k<=0 or k>n.
From Peter Luschny, Mar 07 2009: (Start)
Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A102189.
Same partition product with length statistic is A008275.
Diagonal a(A000217(n)) = rising_factorial(1,n-1), A000142(n-1) (n > 0).
Row sum is A000142. (End)
Let k in {1,2,3,...} index the family of sequences A000012, A000085, A057693, A070945, A070946, A070947, ... respectively. Column k is the k-th sequence minus its immediate predecessor. For example, T(5,3)=A057693(5)-A000085(5). - Geoffrey Critzer, May 23 2009

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   3,    2;
  1,   9,    8,    6;
  1,  25,   40,   30,   24;
  1,  75,  200,  180,  144,  120;
  1, 231,  980, 1260, 1008,  840,  720;
  1, 763, 5152, 8820, 8064, 6720, 5760, 5040;
  ...
		

Crossrefs

Cf. A000142.
T(2n,n) gives A052145 (for n>0). - Alois P. Heinz, Apr 21 2017

Programs

  • Maple
    A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*A(n-j,k), j=1..k)))
        end:
    T:= (n, k)-> A(n, k) -A(n, k-1):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 11 2013
  • Mathematica
    Table[CoefficientList[ Series[(Exp[x^m/m] - 1) Exp[Sum[x^k/k, {k, 1, m - 1}]], {x, 0, 8}], x]*Table[n!, {n, 0, 8}], {m, 1, 8}] // Transpose // Grid (* Geoffrey Critzer, May 23 2009 *)
  • Sage
    def A126074(n, k):
        f = factorial(n)
        P = Partitions(n, max_part=k, inner=[k])
        return sum(f // p.aut() for p in P)
    for n in (1..9): print([A126074(n,k) for k in (1..n)]) # Peter Luschny, Apr 17 2016

Formula

T(n,1) = 1.
T(n,2) = n! * Sum_{k=1..[n/2]} 1/(k! * (2!)^k * (n-2*k)!).
T(n,k) = n!/k * (1-1/(n-k)-...-1/(k+1)-1/2k), if n/3 < k <= n/2.
T(n,k) = n!/k, if n/2 < k <= n.
T(n,n) = (n-1)! = A000142(n-1).
E.g.f. for k-th column: exp(-x^k*LerchPhi(x,1,k))*(exp(x^k/k)-1)/(1-x). - Vladeta Jovovic, Mar 03 2007
From Peter Luschny, Mar 07 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+1). (End)
Sum_{k=1..n} k * T(n,k) = A028418(n). - Alois P. Heinz, May 17 2016

A049218 Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -8, 0, 1, 24, 0, -20, 0, 1, 0, 184, 0, -40, 0, 1, -720, 0, 784, 0, -70, 0, 1, 0, -8448, 0, 2464, 0, -112, 0, 1, 40320, 0, -52352, 0, 6384, 0, -168, 0, 1, 0, 648576, 0, -229760, 0, 14448, 0, -240, 0, 1, -3628800, 0, 5360256, 0, -804320, 0, 29568, 0, -330, 0, 1
Offset: 1

Views

Author

Keywords

Comments

|T(n,k)| gives the sum of the M_2 multinomial numbers (A036039) for those partitions of n with exactly k odd parts. E.g.: |T(6,2)| = 144 + 40 = 184 from the partitions of 6 with exactly two odd parts, namely (1,5) and (3,3), with M_2 numbers 144 and 40. Proof via the general Jabotinsky triangle formula for |T(n,k)| using partitions of n into k parts and their M_3 numbers (A036040). Then with the special e.g.f. of the (unsigned) k=1 column, f(x):= arctanh(x), only odd parts survive and the M_3 numbers are changed into the M_2 numbers. For the Knuth reference on Jabotinsky triangles see A039692. - Wolfdieter Lang, Feb 24 2005 [The first two sentences have been corrected thanks to the comment by José H. Nieto S. given below. - Wolfdieter Lang, Jan 16 2012]
|T(n,k)| gives the number of permutations of {1,2,...,n} (degree n permutations) with the number of odd cycles equal to k. E.g.: |T(5,3)|= 20 from the 20 degree 5 permutations with cycle structure (.)(.)(...). Proof: Use the cycle index polynomial for the symmetric group S_n (see the M_2 array A036039 or A102189) together with the partition interpretation of |T(n,k)| given above. - Wolfdieter Lang, Feb 24 2005 [See the following José H. Nieto S. correction. - Wolfdieter Lang, Jan 16 2012]
The first sentence of the above comment is inexact, it should be "|T(n,k)| gives the number of degree n permutations which decompose into exactly k odd cycles". The number of degree n permutations with k odd cycles (and, possibly, other cycles of even length) is given by A060524. - José H. Nieto S., Jan 15 2012
The unsigned triangle with e.g.f. exp(x*arctanh(z)) is the associated Jabotinsky type triangle for the Sheffer type triangle A060524. See the comments there. - Wolfdieter Lang, Feb 24 2005
Also the Bell transform of the sequence (-1)^(n/2)*A005359(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
   1;
   0,   1;
  -2,   0,   1;
   0,  -8,   0,   1;
  24,   0, -20,   0,   1;
   0, 184,   0, -40,   0,   1;
  ...
O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.

Crossrefs

Essentially same as A008309, which is the main entry for this sequence.
Row sums (unsigned) give A000246(n); signed row sums give A002019(n), n>=1. A137513.

Programs

  • Maple
    A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # R. J. Mathar, Feb 14 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Dec 06 2011, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 12;
    M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)

Formula

E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(n, k) x^n/n!.
T(n,k) = ((-1)^((3*n+k)/2)*n!/2^k)*Sum_{i=k..n} 2^i*binomial(n-1,i-1)*Stirling1(i,k)/i!. - Vladimir Kruchinin, Feb 11 2011
E.g.f.: exp(t*arctan(x)) = 1 + t*x + t^2*x^2/2! + t*(t^2-2)*x^3/3! + .... The unsigned row polynomials are the Mittag-Leffler polynomials M(n,t/2). See A137513. The compositional inverse (with respect to x) (x-t/2*log((1+x)/(1-x)))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3!+ (24*t+16*t^2)/(1-t)^7*x^5/5! + .... The rational functions in t generate the (unsigned) diagonals of the table. See the Bala link. - Peter Bala, Dec 04 2011

Extensions

Additional comments from Michael Somos

A110141 Triangle, read by rows, where row n lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k).

Original entry on oeis.org

1, 1, 2, 2, 6, 2, 3, 24, 4, 3, 8, 4, 120, 12, 6, 8, 4, 6, 5, 720, 48, 18, 16, 8, 6, 5, 48, 8, 18, 6, 5040, 240, 72, 48, 24, 12, 10, 48, 8, 18, 6, 24, 10, 12, 7, 40320, 1440, 360, 192, 96, 36, 30, 96, 16, 36, 12, 24, 10, 12, 7, 384, 32, 36, 12, 15, 32, 8, 362880, 10080, 2160, 960
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2005

Keywords

Comments

Row n starts with n!, after which the following pattern holds. When terms of row n are divided by a list of factorials, with (n-j-1)! repeated A002865(j+1) times in the list as j=1..n-1, the result is the initial terms of A110142. E.g., row 6 is: {720,48,18,16,8,6,5,48,8,18,6}; divide by respective factorials: {6!,4!,3!,2!,2!,1!,1!,0!,0!,0!,0!} with {4!,3!,2!,1!,0!} respectively occurring {1,1,2,2,4} times (A002865), yields the initial terms of A110142: {1,2,3,8,4,6,5,48,8,18,6}.
The term of the sequence corresponding to the product c_1^{n_1}c_2^{n_2}...c_k^{n_k} is equal to the number of elements in the centralizer of a permutation of n_1+2n_2+...+kn_k elements whose cycle type is 1^{n_1}2^{n_2}...k^{n^k}. (This fact is very standard, in particular, for the theory of symmetric functions.) - Vladimir Dotsenko, Apr 19 2009
Multiplying the values of row n by the corresponding values in row n of A102189, one obtains n!. - Jaimal Ichharam, Aug 06 2015
a(n,k) is the number of permutations in S_n that commute with a permutation having cycle type "k". Here, the cycle type of an n-permutation pi is the vector (i_1,...,i_n) where i_j is the number of cycles in pi of length j. These A000041(n) vectors can be ordered in reverse lexicographic order. The k-th cycle type is the k-th vector in this ordering. - Geoffrey Critzer, Jan 18 2019

Examples

			Coefficients [x^n] exp(c1*x + (c2/2)*x^2 + (c3/3)*x^3 + ...) begin:
[x^0]: 1;
[x^1]: 1*c1;
[x^2]: (1/2)*c1^2 + (1/2)*c2;
[x^3]: (1/6)*c1^3 + (1/2)*c1*c2 + (1/3)*c3;
[x^4]: (1/24)*c1^4 + (1/4)*c1^2*c2 + (1/3)*c1*c3 + (1/8)*c2^2 + (1/4)*c4;
[x^5]: (1/120)*c1^5 + (1/12)*c1^3*c2 + (1/6)*c1^2*c3 + (1/8)*c1*c2^2 + (1/4)*c1*c4 + (1/6)*c2*c3 + (1/5)*c5;
[x^6]: (1/720)*c1^6 + (1/48)*c1^4*c2 + (1/18)*c1^3*c3 + (1/16)*c1^2*c2^2 + (1/8)*c1^2*c4 + (1/6)*c1*c2*c3 + (1/5)*c1*c5 + (1/48)*c2^3 + (1/8)*c2*c4 + (1/18)*c3^2 + (1/6)*c6;
forming this triangle of unit fraction coefficients:
1;
1;
2,2;
6,2,3;
24,4,3,8,4;
120,12,6,8,4,6,5;
720,48,18,16,8,6,5,48,8,18,6;
5040,240,72,48,24,12,10,48,8,18,6,24,10,12,7;
40320,1440,360,192,96,36,30,96,16,36,12,24,10,12,7,384,32,36,12,15,32,8;
362880,10080,2160,960,480,144,120,288,48,108,36,48,20,24,14,384,32,36,12,15,32,8,144,40,24,14,162,18,20,9; ...
		

References

  • Macdonald, I. G. Symmetric functions and Hall polynomials. Oxford University Press, 1995. [From Vladimir Dotsenko, Apr 19 2009]

Crossrefs

Cf. A000041, A002865, A102189, A110142, A110143 (row sums).
First, second and third entries of each row are given (up to an offset) by A000142, A052849, and A052560 respectively. - Vladimir Dotsenko, Apr 19 2009

Programs

  • Mathematica
    Table[n!/CoefficientRules[n! CycleIndex[SymmetricGroup[n], s]][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Jan 18 2019 *)

Formula

Number of terms in row n is A000041(n) (partition numbers). The unit fractions of each row sum to unity: Sum_{k=1..A000041(n)} 1/T(n, k) = 1.
a(n,k) = n!/A181897(n,k). - Geoffrey Critzer, Jan 18 2019

A107107 For each partition of n, calculate (dM2/dM3) where dM2 = A036039(p) and dM3 = A036040(p); then sum over all partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 11, 37, 168, 926, 6181, 47651, 418546, 4106264, 44537519, 528408261, 6807428748, 94588717554, 1409927483625, 22437711255279, 379674820846534, 6806486383431340, 128862216628864163, 2569080120361323721, 53797824318887051264, 1180533584545138213222
Offset: 0

Views

Author

Alford Arnold, May 12 2005

Keywords

Comments

Values for individual partitions (A107106) are factorials when all but one part of the partition has size one or two, but not usually in other cases.

Examples

			For n = 6, (120,144,90,40,90,120,15,40,45,15,1) / (1,6,15,10,15,60,15,20,45,15,1)
  equals (120,24,6,4,6,2,1,2,1,1,1) so A107107(6) = 168.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i)*(i-1)!)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-(k-1)!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 15 2015 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */

Formula

For partition [], the contribution to the sum is product_i (c_i - 1)!^k_i.
G.f.: 1/Product_{m>0} (1-(m-1)!*x^m). - Vladeta Jovovic, Jul 10 2007
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, (k-1)!*S(n-k,k))+(n-1)!, S(n,n)=(n-1)!, S(0,m)=1, S(n,m)=0 for m>n. - Vladimir Kruchinin, Sep 07 2014
a(n) ~ (n-1)! * (1 + 1/n + 3/n^2 + 11/n^3 + 50/n^4 + 278/n^5 + 1861/n^6 + 14815/n^7 + 138477/n^8 + 1497775/n^9 + 18465330/n^10). - Vaclav Kotesovec, Mar 15 2015

Extensions

Edited, corrected and extended by Franklin T. Adams-Watters, Nov 03 2005
More terms from Vladeta Jovovic, Jul 10 2007

A279038 Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 90, 40, 120, 40, 15, 45, 15, 1, 720, 840, 504, 504, 420, 630, 210, 280, 210, 420, 70, 105, 105, 21, 1, 5040, 5760, 3360, 3360, 2688, 4032, 1344, 1260, 3360, 1260, 2520, 420, 1120, 1120, 1680, 1120, 112, 105, 420, 210, 28, 1
Offset: 0

Views

Author

David W. Wilson and Olivier Gérard, Dec 04 2016

Keywords

Comments

The ordering of integer partitions used in this version is also called:
- canonical ordering
- graded reverse lexicographic ordering
- magma (software) ordering
by opposition to the ordering used by Abramowitz and Stegun.

Examples

			First rows are:
    1
    1
    1   1
    2   3   1
    6   8   3   6   1
   24  30  20  20  15   10   1
  120 144  90  90  40  120  40  15  45  15  1
  720 840 504 504 420  630 210 280 210 420 70 105 105 21 1
  ...
		

Crossrefs

Cf. A000041 (number of partitions of n, length of each row).
Cf. A128628 (triangle of partition lengths)
Cf. A036039 (a different ordering), A102189 (row reversed version of A036039).
Row sums give A000142.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1],
          `if`(i<1, [], [seq(map(x-> x*i^j*j!,
           b(n-i*j, i-1))[], j=[iquo(n, i)-t$t=0..n/i])]))
        end:
    T:= n-> map(x-> n!/x, b(n$2))[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 04 2016
  • Mathematica
    Flatten[Table[
      Map[n!/Times @@ ((First[#]^Length[#]*Factorial[Length[#]]) & /@
            Split[#]) &, IntegerPartitions[n]], {n, 1, 8}]]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {1},
         If[i < 1, {}, Flatten@Table[#*i^j*j!& /@
         b[n - i*j, i - 1], {j, Quotient[n, i] - Range[0, n/i]}]]];
    T[n_] := n!/#& /@ b[n, n];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)

Extensions

One term for row n=0 prepended by Alois P. Heinz, Dec 04 2016

A319192 Irregular triangle where T(n,k) is the coefficient of p(y) in n! * Sum_{i1 < ... < in} (x_i1 * ... * x_in), where p is power-sum symmetric functions and y is the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -6, 3, 8, -6, 1, 24, -30, -20, 15, 20, -10, 1, -120, 90, 144, 40, -15, -90, -120, 45, 40, -15, 1, 720, -840, -504, -420, 630, 504, 210, 280, -105, -210, -420, 105, 70, -21, 1, -5040, 5760, 3360, 1260, -3360, 2688, -1260, -4032, -3360, -1120
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2018

Keywords

Comments

A generalization of the triangle of Stirling numbers of the first kind, these are the coefficients appearing in the expansion of single-part augmented elementary symmetric functions in terms of power-sum symmetric functions.

Examples

			Triangle begins:
   1
  -1   1
   2  -3   1
  -6   3   8  -6   1
  24 -30 -20  15  20 -10   1
The fourth row corresponds to the symmetric function identity: 24 e(4) = -6 p(4) + 3 p(22) + 8 p(31) - 6 p(211) + p(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    numPermsOfType[ptn_]:=Total[ptn]!/Times@@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*numPermsOfType[primeMS[m]],{n,5},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]

A212358 Coefficients of the cycle index polynomial for the alternating group A_n multiplied by n!/2, n>=1, read as partition polynomial.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 8, 3, 0, 1, 24, 0, 0, 20, 15, 0, 1, 0, 144, 90, 40, 0, 0, 0, 40, 45, 0, 1, 720, 0, 0, 0, 504, 630, 280, 210, 0, 0, 0, 70, 105, 0, 1, 0, 5760, 3360, 2688, 1260, 0, 0, 0, 0, 0, 1344, 2520, 1120, 1680, 105, 0, 0, 0, 112, 210, 0, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jun 12 2012

Keywords

Comments

The row lengths sequence is A000041.
The partitions are ordered like in Abramowitz-Stegun (for the reference see A036036, where also a link to a work by C. F. Hindenburg from 1779 is found where this order has been used).
The row sums are A001710(n-1), n>=1.
The cycle index (multivariate polynomial) for the alternating group A_n, called Z(A_n), is
Z(S_n) + Z(S_n;x[1],-x[2],x[3],-x[4],... ), n>=1,
with the cycle index Z(S_n) for the symmetric group S_n, in the variables x[1],...,x[n]. See the Harary and Palmer reference. The coefficients of n!*Z(S_n) are the M_2 numbers of Abramowitz-Stegun, pp. 831-2. See A036039 and A102189, also for the Abramowitz-Stegun reference.

Examples

			Triangle begins:
  n\k  1    2   3   4   5  6  7   8   9 10 11 ...
  1:   1
  2:   0    1
  3:   2    0   1
  4:   0    8   3   0   1
  5:  24    0   0  20  15  0  1
  6:   0  144  90  40   0  0  0  40  45  0  1
  ...
See the link for rows n=1..10 and the Z(A_n) polynomials for n=1..13.
n=6: Z(A_6) = 2*(144*x[1]*x[5] + 90*x[2]*x[4] + 40*x[3]^2 + 40*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 1*x[1]^6)/6!, because the relevant partitions of 6 appear for k=2: 1,5;  k=3: 2,4; k=4: 3^2; k=8: 1^3,3; k=9: 1^2,2^2  and k=11: 1^6. Thus, Z(A_6) = (2/5)*x[1]*x[5] + (1/4)*x[2]*x[4] +  (1/9)*x[3]^2  + (1/9)*x[1]^3*x[3] + (1/8)*x[1]^2*x[2]^2 + (1/360)*x[1]^6.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.6).

Crossrefs

Cf. A036039 or A102189 for Z(S_n), A212355 for Z(D_n), and A212357 for Z(C_n).

Formula

The cycle index polynomial for the alternating group A_n is Z(A_n) = (2*a(n,k)*x[1]^(e[k,1])*x[2]^(e[k,2])*...*x[n]^(e[k,n]))/n!, n>=1, if the k-th partition of n in Abramowitz-Stegun order is 1^(e[k,1]) 2^(e[k,2]) ... n^(e[k,n]), where a part j with vanishing exponent e[k,j] has to be omitted. The n dependence of the exponents has been suppressed. See the comment above for the Z(A_n) formula, and the link for these polynomials for n=1..13.
a(n,k) is the coefficient the term of (n!/2)*Z(A_n) corresponding to the k-th partition of n in Abramowitz-Stegun order. a(n,k) = 0 if there is no such term in Z(A_n).
Showing 1-9 of 9 results.