cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A331191 Numbers whose dual Zeckendorf representations (A104326) are palindromic.

Original entry on oeis.org

0, 1, 3, 4, 6, 11, 12, 16, 19, 22, 32, 33, 38, 42, 48, 53, 64, 71, 87, 88, 98, 106, 110, 118, 124, 134, 142, 148, 174, 194, 205, 231, 232, 245, 255, 271, 284, 288, 304, 317, 323, 336, 346, 362, 375, 402, 420, 462, 474, 516, 548, 566, 608, 609, 635, 656, 666, 687
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2020

Keywords

Comments

Pairs of numbers of the form {F(2*k-1)-2, F(2*k-1)-1}, for k >= 2, where F(k) is the k-th Fibonacci number, are consecutive terms in this sequence: {0, 1}, {3, 4}, {11, 12}, {32, 33}, ... - Amiram Eldar, Sep 03 2022

Examples

			4 is a term since its dual Zeckendorf representation, 101, is palindromic.
		

Crossrefs

Programs

  • Mathematica
    mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
    select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
    fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]);
    pals = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^6 - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
    Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 0]), mirror[#, {0}] & /@ (select[pals, 0]), mirror[#, {1}] & /@ pals]]

A095791 Number of digits in lazy-Fibonacci-binary representation of n (A104326).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Clark Kimberling, Jun 05 2004

Keywords

Comments

The lazy Fibonacci representation of n >= 0 is obtained by replacing every string of 0's in the binary representation of n by a single 0, thus obtaining a finite zero-one sequence (d(2), d(3), d(4), ..., d(k)), and then forming d(2)*F(2) + d(3)*F(3) + ... + d(k)*F(k), as in the Mathematica program. The lazy Fibonacci representation is often called the maximal Fibonacci representation, in contrast to the Zeckendorf representation, also called the minimal Fibonacci representation. - Clark Kimberling, Mar 04 2015
Regarding the References, the lazy Fibonacci representation is sometimes attributed to Erdős and Joo, but it is also found in Brown and Ferns. - Clark Kimberling, Mar 04 2015

Examples

			The lazy Fibonacci representation of 14 is 8+3+2+1, which in binary notation is 10111, which consists of 5 digits.
		

Crossrefs

Programs

  • Mathematica
    t=DeleteCases[IntegerDigits[-1+Range[200],2],{_,0,0,_}];
    A181632=Flatten[t]
    A095791=Map[Length,t]
    A112309=Map[DeleteCases[Reverse[#] Fibonacci[Range[Length[#]]+1],0]&,t]
    A112310=Map[Length,A112309]
    (* Peter J. C. Moses, Mar 03 2015 *)
  • PARI
    a(n)=if(n<2,1,a(floor(n*(-1+sqrt(5))/2))+1) \\ Benoit Cloitre, Dec 17 2006
    
  • PARI
    a(n)=if(n<0,0,c=1;s=n;while(floor(s*2/(1+sqrt(5)))>0,c++;s=floor(s*2/(1+sqrt(5))));c) \\ Benoit Cloitre, May 24 2007

Formula

1, 1, then F(3) 2's, then F(4) 3's, then F(5) 4's, ..., then F(k+1) k's, ...
a(0)=a(1)=1 then a(n) = a(floor(n/tau))+1 where tau=(1+sqrt(5))/2. - Benoit Cloitre, Dec 17 2006
a(n) is the least k such that f^(k)(n)=0 where f^(k+1)(x)=f(f^(k)(x)) and f(x)=floor(x/phi) where phi=(1+sqrt(5))/2 (see PARI/GP program). - Benoit Cloitre, May 24 2007
a(n) = A070939(A104326(n)). - Amiram Eldar, Oct 10 2023

A331109 The number of dual-Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the dual Zeckendorf expansion (A104326) of each s(i) contains only terms that are in the dual Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

Dual-Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with dual Zeckendorf expansion instead of binary expansion.
First differs from A286324 at n = 32.

Examples

			a(32) = 4 since 32 = 2^5 and the dual Zeckendorf expansion of 5 is 110, i.e., its dual Zeckendorf representation is a set with 2 terms: {2, 3}. There are 4 possible exponents of 2: 0, 2, 3 and 5, corresponding to the subsets {}, {2}, {3} and {2, 3}. Thus 32 has 4 dual-Zeckendorf-infinitary divisors: 2^0 = 1, 2^2 = 4, 2^3 = 8, and 2^5 = 32.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 1, 2^Total[v[[i[[1, 1]] ;; -1]]]]];
    f[p_, e_] := dualZeck[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = 2^A112310(e).

A117479 Number of zeros in the maximal Fibonacci bit-representation of n (A104326).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 1, 2, 1, 1, 1, 0, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 0, 3, 3, 2, 3, 2, 2, 2, 1, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 0, 4, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 1, 3, 3, 2, 3, 2, 2, 2, 1, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 0, 4
Offset: 0

Views

Author

Casey Mongoven, Mar 20 2006

Keywords

Examples

			a(7) = 2 because A104326(7) = 1010 contains 2 zeros.
		

Crossrefs

A181631 Triangle by rows, number of leading 1's in the maximal Fibonacci representation (A104326).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 1, 2, 2, 3, 4, 5, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 8
Offset: 1

Views

Author

Gary W. Adamson, Nov 02 2010

Keywords

Comments

Row sums = A001911: (1, 3, 6, 11, 19, 32, ...).
A112310 = number of 1's in the maximal Fibonacci representation, which has headings of (..., 8, 5, 3, 2, 1) filling entries from the right to left; as opposed to the minimal Fibonacci representation (A014417) which starts from the left. For example, 8 in maximal = 1011 = (5 + 2 + 1) whereas in minimal = (10000) = (8).
Rows have (1, 2, 3, 5, 8, ...) terms.

Examples

			First few rows of the triangle:
  1;
  1, 2;
  1, 2, 3;
  1, 1, 2, 3, 4;
  1, 1, 1, 2, 2, 3, 4, 5;
  1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6;
  ...
Example: a(14) = 1 since 14 in the maximal Fibonacci representation is 10111.
		

Crossrefs

Cf. A000045 (row lengths), A003754, A001911 (row sums), A014417, A090996, A104326, A112310.

Programs

  • Mathematica
    f[s_] := Module[{i = FirstPosition[s, 0]}, If[MissingQ[i], Length[s], i[[1]] - 1]]; f /@ Select[IntegerDigits[#, 2] & /@ Range[300], SequencePosition[#, {0, 0}] == {} &] (* Amiram Eldar, May 31 2025 *)

Formula

a(n) = A090996(A003754(n+1)). - Amiram Eldar, May 31 2025

Extensions

More terms from Amiram Eldar, May 31 2025

A356749 a(n) is the number of trailing 1's in the dual Zeckendorf representation of n (A104326).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 6, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 7, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 6, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0
Offset: 0

Views

Author

Amiram Eldar, Aug 25 2022

Keywords

Comments

The asymptotic density of the occurrences of k = 0, 1, 2, ... is 1/phi^(k+2), where phi = 1.618033... (A001622) is the golden ratio.
The asymptotic mean of this sequence is phi.

Examples

			  n  a(n)  A104326(n)
  -  ----  ----------
  0     0           0
  1     1           1
  2     0          10
  3     2          11
  4     1         101
  5     0         110
  6     3         111
  7     0        1010
  8     2        1011
  9     1        1101
		

Crossrefs

Similar sequences: A003849, A035614, A276084, A278045.

Programs

  • Mathematica
    fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i ;; i + 2]] == {1, 0, 0}, v[[i ;; i + 2]] = {0, 1, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

A104325 Number of runs of equal bits in the dual Zeckendorf representation of n (A104326).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 3, 3, 2, 1, 5, 4, 3, 4, 3, 3, 2, 1, 6, 5, 5, 4, 3, 5, 4, 3, 4, 3, 3, 2, 1, 7, 6, 5, 6, 5, 5, 4, 3, 6, 5, 5, 4, 3, 5, 4, 3, 4, 3, 3, 2, 1, 8, 7, 7, 6, 5, 7, 6, 5, 6, 5, 5, 4, 3, 7, 6, 5, 6, 5, 5, 4, 3, 6, 5, 5, 4, 3, 5, 4, 3, 4, 3, 3, 2, 1, 9, 8, 7, 8, 7, 7, 6, 5, 8, 7, 7, 6, 5
Offset: 0

Views

Author

Ron Knott, Mar 01 2005

Keywords

Comments

Sequence has some interesting fractal properties (plot it!)

Examples

			The dual Zeckendorf representation of 13 is 10110(fib) corresponding to {8, 3, 2}.
The largest set of Fibonacci numbers whose sum is n (cf. the Zeckendorf representation is the smallest set). This is composed of runs of one 1, one 0, two 1's, one 0 i.e. 4 runs in all, so a(13) = 4.
		

Crossrefs

Programs

  • Maple
    dualzeckrep:=proc(n)local i,z;z:=zeckrep(n);i:=1; while i<=nops(z)-2 do if z[i]=1 and z[i+1]=0 and z[i+2]=0 then z[i]:=0; z[i+1]:=1;z[i+2]:=1; if i>3 then i:=i-2 fi else i:=i+1 fi od; if z[1]=0 then z:=subsop(1=NULL,z) fi; z end proc: countruns:=proc(s)local i,c,elt;elt:=s[1];c:=1; for i from 2 to nops(s) do if s[i]<>s[i-1] then c:=c+1 fi od; c end proc: seq(countruns(dualzeckrep(n)),n=1..100);
  • Mathematica
    Length @ Split[IntegerDigits[#, 2]] & /@  Select[Range[0, 1000], SequenceCount[ IntegerDigits[#, 2], {0, 0}] == 0 &] (* Amiram Eldar, Jan 18 2020 *)

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, Jan 18 2020

A331110 The sum of dual-Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the dual Zeckendorf expansion (A104326) of each s(i) contains only terms that are in the dual Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 27, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 45, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 108, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 135, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

First differs from A188999 at n = 32.

Examples

			a(32) = 45 since 32 = 2^5 and the dual Zeckendorf expansion of 5 is 110, i.e., its dual Zeckendorf representation is a set with 2 terms: {2, 3}. There are 4 possible exponents of 2: 0, 2, 3 and 5, corresponding to the subsets {}, {2}, {3} and {2, 3}. Thus 32 has 4 dual-Zeckendorf-infinitary divisors: 2^0 = 1, 2^2 = 4, 2^3 = 8, and 2^5 = 32, and their sum is 1 + 4 + 8 + 32 = 45.
		

Crossrefs

The number of dual-Zeckendorf-infinitary divisors of n is in A331109.

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, {}, v[[i[[1, 1]] ;; -1]]]];
    f[p_, e_] := p^Fibonacci[1 + Position[Reverse@dualZeck[e], _?(# == 1 &)]];
    a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); Array[a, 100]

Formula

Multiplicative with a(p^e) = Product_{i} (p^s(i) + 1), where s(i) are the terms in the dual Zeckendorf representation of e (A104326).

A331192 Numbers whose Zeckendorf representation (A014417) and dual Zeckendorf representation (A104326) are both palindromic.

Original entry on oeis.org

0, 1, 4, 6, 12, 22, 33, 64, 88, 174, 232, 462, 609, 1216, 1596, 3190, 4180, 8358, 10945, 21888, 28656, 57310, 75024, 150046, 196417, 392832, 514228, 1028454, 1346268, 2692534, 3524577, 7049152, 9227464, 18454926, 24157816, 48315630, 63245985, 126491968, 165580140
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2020

Keywords

Comments

Apparently union of numbers of the form F(2*k - 1) - 1 (k > 0) and numbers of the form 2 * F(2*k - 1) - 4 (k > 1), where F(m) is the m-th Fibonacci number.
The numbers of the form F(2*k - 1) - 1 have the same Zeckendorf and dual Zeckendorf representations. For k > 1 the representation is 1010...01, k-1 1's interleaved with k-2 0's.

Examples

			6 is a term since its Zeckendorf representation, 1001, and its dual Zeckendorf representation, 111, are both palindromic.
		

Crossrefs

Programs

  • Mathematica
    mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
    select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
    fib[dig_] := Plus @@ (dig*Fibonacci[Range[2, Length[dig] + 1]]);
    ndig = 12; pals1 = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, ndig], SequenceCount[#, {1, 1}] == 0 &]];
    zeckPals = Union @ Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals1, 1]), mirror[#, {1}] & /@ (select[pals1, 1]), mirror[#, {0}] & /@ pals1]];
    pals2 = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^ndig - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
    dualZeckPals = Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals2, 0]), mirror[#, {0}] & /@ (select[pals2, 0]), mirror[#, {1}] & /@ pals2]];
    Intersection[zeckPals, dualZeckPals]

A000071 a(n) = Fibonacci(n) - 1.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, 4180, 6764, 10945, 17710, 28656, 46367, 75024, 121392, 196417, 317810, 514228, 832039, 1346268, 2178308, 3524577, 5702886, 9227464, 14930351, 24157816, 39088168, 63245985, 102334154
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of allowable transition rules for passing from one change to the next (on n-1 bells) in the English art of bell-ringing. This is also the number of involutions in the symmetric group S_{n-1} which can be represented as a product of transpositions of consecutive numbers from {1, 2, ..., n-1}. Thus for n = 6 we have a(6) from (12), (12)(34), (12)(45), (23), (23)(45), (34), (45), for instance. See my 1983 Math. Proc. Camb. Phil. Soc. paper. - Arthur T. White, letter to N. J. A. Sloane, Dec 18 1986
Number of permutations p of {1, 2, ..., n-1} such that max|p(i) - i| = 1. Example: a(4) = 2 since only the permutations 132 and 213 of {1, 2, 3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003 [For a(5) = 4 we have 2143, 1324, 2134 and 1243. - Jon Perry, Sep 14 2013]
Number of 001-avoiding binary words of length n-3. a(n) is the number of partitions of {1, ..., n-1} into two blocks in which only 1- or 2-strings of consecutive integers can appear in a block and there is at least one 2-string. E.g., a(6) = 7 because the enumerated partitions of {1, 2, 3, 4, 5} are 124/35, 134/25, 14/235, 13/245, 1245/3, 145/23, 125/34. - Augustine O. Munagi, Apr 11 2005
Numbers for which only one Fibonacci bit-representation is possible and for which the maximal and minimal Fibonacci bit-representations (A104326 and A014417) are equal. For example, a(12) = 10101 because 8 + 3 + 1 = 12. - Casey Mongoven, Mar 19 2006
Beginning with a(2), the "Recamán transform" (see A005132) of the Fibonacci numbers (A000045). - Nick Hobson, Mar 01 2007
Starting with nonzero terms, a(n) gives the row sums of triangle A158950. - Gary W. Adamson, Mar 31 2009
a(n+2) is the minimum number of elements in an AVL tree of height n. - Lennert Buytenhek (buytenh(AT)wantstofly.org), May 31 2010
a(n) is the number of branch nodes in the Fibonacci tree of order n-1. A Fibonacci tree of order n (n >= 2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node (see the Knuth reference, p. 417). - Emeric Deutsch, Jun 14 2010
a(n+3) is the number of distinct three-strand positive braids of length n (cf. Burckel). - Maxime Bourrigan, Apr 04 2011
a(n+1) is the number of compositions of n with maximal part 2. - Joerg Arndt, May 21 2013
a(n+2) is the number of leafs of great-grandparent DAG (directed acyclic graph) of height n. A great-grandparent DAG of height n is a single node for n = 1; for n > 1 each leaf of ggpDAG(n-1) has two child nodes where pairs of adjacent new nodes are merged into single node if and only if they have disjoint grandparents and same great-grandparent. Consequence: a(n) = 2*a(n-1) - a(n-3). - Hermann Stamm-Wilbrandt, Jul 06 2014
2 and 7 are the only prime numbers in this sequence. - Emmanuel Vantieghem, Oct 01 2014
From Russell Jay Hendel, Mar 15 2015: (Start)
We can establish Gerald McGarvey's conjecture mentioned in the Formula section, however we require n > 4. We need the following 4 prerequisites.
(1) a(n) = F(n) - 1, with {F(n)}A000045.%20(2)%20(Binet%20form)%20F(n)%20=%20(d%5En%20-%20e%5En)/sqrt(5)%20with%20d%20=%20phi%20and%20e%20=%201%20-%20phi,%20de%20=%20-1%20and%20d%20+%20e%20=%201.%20It%20follows%20that%20a(n)%20=%20(d(n)%20-%20e(n))/sqrt(5)%20-%201.%20(3)%20To%20prove%20floor(x)%20=%20y%20is%20equivalent%20to%20proving%20that%20x%20-%20y%20lies%20in%20the%20half-open%20interval%20%5B0,%201).%20(4)%20The%20series%20%7Bs(n)%20=%20c1%20x%5En%20+%20c2%7D">{n >= 1} the Fibonacci numbers A000045. (2) (Binet form) F(n) = (d^n - e^n)/sqrt(5) with d = phi and e = 1 - phi, de = -1 and d + e = 1. It follows that a(n) = (d(n) - e(n))/sqrt(5) - 1. (3) To prove floor(x) = y is equivalent to proving that x - y lies in the half-open interval [0, 1). (4) The series {s(n) = c1 x^n + c2}{n >= 1}, with -1 < x < 0, and c1 and c2 positive constants, converges by oscillation with s(1) < s(3) < s(5) < ... < s(6) < s(4) < s(2). If follows that for any odd n, the open interval (s(n), s(n+1)) contains the subsequence {s(t)}_{t >= n + 2}. Using these prerequisites we can analyze the conjecture.
Using prerequisites (2) and (3) we see we must prove, for all n > 4, that d((d^(n-1) - e^(n-1))/sqrt(5) - 1) - (d^n - e^n)/sqrt(5) + 1 + c lies in the interval [0, 1). But de = -1, implying de^(n-1) = -e^(n-2). It follows that we must equivalently prove (for all n > 4) that E(n, c) = (e^(n-2) + e^n)/sqrt(5) + 1 - d + c = e^(n-2) (e^2 + 1)/sqrt(5) + e + c lies in [0, 1). Clearly, for any particular n, E(n, c) has extrema (maxima, minima) when c = 2*(1-d) and c = (1+d)*(1-d). Therefore, the proof is completed by using prerequisite (4). It suffices to verify E(5, 2*(1-d)) = 0, E(6, 2*(1-d)) = 0.236068, E(5, (1-d)*(1+d)) = 0.618034, E(6, (1-d)*(1+d)) = 0.854102, all lie in [0, 1).
(End)
a(n) can be shown to be the number of distinct nonempty matchings on a path with n vertices. (A matching is a collection of disjoint edges.) - Andrew Penland, Feb 14 2017
Also, for n > 3, the lexicographically earliest sequence of positive integers such that {phi*a(n)} is located strictly between {phi*a(n-1)} and {phi*a(n-2)}. - Ivan Neretin, Mar 23 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) <= e(k). [Martinez and Savage, 2.5]
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) <= e(k) and e(i) != e(k). [Martinez and Savage, 2.5]
(End)
Numbers whose Zeckendorf (A014417) and dual Zeckendorf (A104326) representations are the same: alternating digits of 1 and 0. - Amiram Eldar, Nov 01 2019
a(n+2) is the length of the longest array whose local maximum element can be found in at most n reveals. See link to the puzzle by Alexander S. Kulikov. - Dmitry Kamenetsky, Aug 08 2020
a(n+2) is the number of nonempty subsets of {1,2,...,n} that contain no consecutive elements. For example, the a(6)=7 subsets of {1,2,3,4} are {1}, {2}, {3}, {4}, {1,3}, {1,4} and {2,4}. - Muge Olucoglu, Mar 21 2021
a(n+3) is the number of allowed patterns of length n in the even shift (that is, a(n+3) is the number of binary words of length n in which there are an even number of 0s between any two occurrences of 1). For example, a(7)=12 and the 12 allowed patterns of length 4 in the even shift are 0000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1100, 1110, 1111. - Zoran Sunic, Apr 06 2022
Conjecture: for k a positive odd integer, the sequence {a(k^n): n >= 1} is a strong divisibility sequence; that is, for n, m >= 1, gcd(a(k^n), a(k^m)) = a(k^gcd(n,m)). - Peter Bala, Dec 05 2022
In general, the sum of a second-order linear recurrence having signature (c,d) will be a third-order recurrence having a signature (c+1,d-c,-d). - Gary Detlefs, Jan 05 2023
a(n) is the number of binary strings of length n-2 whose longest run of 1's is of length 1, for n >= 3. - Félix Balado, Apr 03 2025

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 1.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 28.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 64.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.

Crossrefs

Antidiagonal sums of array A004070.
Right-hand column 2 of triangle A011794.
Related to sum of Fibonacci(kn) over n. Cf. A099919, A058038, A138134, A053606.
Subsequence of A226538. Also a subsequence of A061489.

Programs

  • Haskell
    a000071 n = a000071_list !! n
    a000071_list = map (subtract 1) $ tail a000045_list
    -- Reinhard Zumkeller, May 23 2013
    
  • Magma
    [Fibonacci(n)-1: n in [1..60]]; // Vincenzo Librandi, Apr 04 2011
    
  • Maple
    A000071 := proc(n) combinat[fibonacci](n)-1 ; end proc; # R. J. Mathar, Apr 07 2011
    a:= n-> (Matrix([[1, 1, 0], [1, 0, 0], [1, 0, 1]])^(n-1))[3, 2]; seq(a(n), n=1..50); # Alois P. Heinz, Jul 24 2008
  • Mathematica
    Fibonacci[Range[40]] - 1 (* or *) LinearRecurrence[{2, 0, -1}, {0, 0, 1}, 40] (* Harvey P. Dale, Aug 23 2013 *)
    Join[{0}, Accumulate[Fibonacci[Range[0, 39]]]] (* Alonso del Arte, Oct 22 2017, based on Giorgi Dalakishvili's formula *)
  • PARI
    {a(n) = if( n<1, 0, fibonacci(n)-1)};
    
  • SageMath
    [fibonacci(n)-1 for n in range(1,60)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = A000045(n) - 1.
a(0) = -1, a(1) = 0; thereafter a(n) = a(n-1) + a(n-2) + 1.
a(n) = A101220(1, 1, n-2), for n > 1.
G.f.: x^3/((1-x-x^2)*(1-x)). - Simon Plouffe in his 1992 dissertation, dropping initial 0's
a(n) = 2*a(n-1) - a(n-3). - R. H. Hardin, Apr 02 2011
Partial sums of Fibonacci numbers. - Wolfdieter Lang
a(n) = -1 + (A*B^n + C*D^n)/10, with A, C = 5 +- 3*sqrt(5), B, D = (1 +- sqrt(5))/2. - Ralf Stephan, Mar 02 2003
a(1) = 0, a(2) = 0, a(3) = 1, then a(n) = ceiling(phi*a(n-1)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, May 06 2003
Conjecture: for all c such that 2*(2 - Phi) <= c < (2 + Phi)*(2 - Phi) we have a(n) = floor(Phi*a(n-1) + c) for n > 4. - Gerald McGarvey, Jul 22 2004. This is true provided n > 3 is changed to n > 4, see proof in Comments section. - Russell Jay Hendel, Mar 15 2015
a(n) = Sum_{k = 0..floor((n-2)/2)} binomial(n-k-2, k+1). - Paul Barry, Sep 23 2004
a(n+3) = Sum_{k = 0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*2^(n-3*k). - Paul Barry, Oct 20 2004
a(n+1) = Sum(binomial(n-r, r)), r = 1, 2, ... which is the case t = 2 and k = 2 in the general case of t-strings and k blocks: a(n+1, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r = 1, 2, ... - Augustine O. Munagi, Apr 11 2005
a(n) = Sum_{k = 0..n-2} k*Fibonacci(n - k - 3). - Ross La Haye, May 31 2006
a(n) = term (3, 2) in the 3 X 3 matrix [1, 1, 0; 1, 0, 0; 1, 0, 1]^(n-1). - Alois P. Heinz, Jul 24 2008
For n >= 4, a(n) = ceiling(phi*a(n-1)), where phi is the golden ratio. - Vladimir Shevelev, Jul 04 2010
Closed-form without two leading zeros g.f.: 1/(1 - 2*x - x^3); ((5 + 2*sqrt(5))*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5))*((1 - sqrt(5))/2)^n - 5)/5; closed-form with two leading 0's g.f.: x^2/(1 - 2*x - x^3); ((5 + sqrt(5))*((1 + sqrt(5))/2)^n + (5 - sqrt(5))*((1 - sqrt(5))/2)^n - 10)/10. - Tim Monahan, Jul 10 2011
A000119(a(n)) = 1. - Reinhard Zumkeller, Dec 28 2012
a(n) = A228074(n - 1, 2) for n > 2. - Reinhard Zumkeller, Aug 15 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 - x^2)/( x*(4*k + 4 - x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
A083368(a(n+3)) = n. - Reinhard Zumkeller, Aug 10 2014
E.g.f.: 1 - exp(x) + 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Jun 15 2016
a(n) = A000032(3+n) - 1 mod A000045(3+n). - Mario C. Enriquez, Apr 01 2017
a(n) = Sum_{i=0..n-2} Fibonacci(i). - Giorgi Dalakishvili (mcnamara_gio(AT)yahoo.com), Apr 02 2005 [corrected by Doug Bell, Jun 01 2017]
a(n+2) = Sum_{j = 0..floor(n/2)} Sum_{k = 0..j} binomial(n - 2*j, k+1)*binomial(j, k). - Tony Foster III, Sep 08 2017
From Peter Bala, Nov 12 2021: (Start)
a(4*n) = Fibonacci(2*n+1)*Lucas(2*n-1) = A081006(n);
a(4*n+1) = Fibonacci(2*n)*Lucas(2*n+1) = A081007(n);
a(4*n+2) = Fibonacci(2*n)*Lucas(2*n+2) = A081008(n);
a(4*n+3) = Fibonacci(2*n+2)*Lucas(2*n+1) = A081009(n). (End)
G.f.: x^3/((1 - x - x^2)*(1 - x)) = Sum_{n >= 0} (-1)^n * x^(n+3) *( Product_{k = 1..n} (k - x)/Product_{k = 1..n+2} (1 - k*x) ) (a telescoping series). - Peter Bala, May 08 2024
Product_{n>=4} (1 + (-1)^n/a(n)) = 3*phi/4, where phi is the golden ratio (A001622). - Amiram Eldar, Nov 28 2024

Extensions

Edited by N. J. A. Sloane, Apr 04 2011
Showing 1-10 of 45 results. Next