cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A347278 First member p(m) of the m-th twin prime pair such that d(m) > 0 and d(m-1) < 0, with d(k) = k/Integral_{x=2..p(k)} 1/log(x)^2 dx - C, C = 2*A005597 = A114907.

Original entry on oeis.org

1369391, 1371989, 1378217, 1393937, 1418117, 1426127, 1428767, 1429367, 1430291, 1494509, 1502141, 1502717, 1506611, 1510307, 35278697, 35287001, 35447171, 35468429, 35468861, 35470271, 35595869, 45274121, 45276227, 45304157, 45306827, 45324569, 45336461, 45336917
Offset: 1

Views

Author

Hugo Pfoertner, Aug 26 2021

Keywords

Comments

The sequence gives the positions, expressed by A001359(m), where the number of twin prime pairs m seen so far first exceeds the number predicted by the first Hardy-Littlewood conjecture after having been less than the predicted number before. A347279 gives the transitions in the opposite direction.
The total number of twin prime pairs up to that with first member x in the intervals a(k) <= x < A347279(k) is above the Hardy-Littlewood prediction. The total number of twin prime pairs up to that with first member x in the intervals A347279(k) <= x < a(k+1) is below the H-L prediction.

Crossrefs

a(1) = A210439(2) (Skewes number for twin primes).

Programs

  • PARI
    halicon(h) = {my(w=Set(vecsort(h)), n=#w, wmin=vecmin(w), distres(v,p)=#Set(v%p)); for(k=1,n, w[k]=w[k]-wmin); my(plim=nextprime(vecmax(w))); prodeuler(p=2, plim, (1-distres(w,p)/p)/(1-1/p)^n) * prodeulerrat((1-n/p)/(1-1/p)^n, 1, nextprime(plim+1))}; \\ k-tuple constant
    Li(x, n)=intnum(t=2, n, 1/log(t)^x); \\ logarithmic integral
    a347278(nterms,CHL)={my(n=1,pprev=1,np=0); forprime(p=5,, if(p%6!=1&&ispseudoprime(p+2), n++; L=Li(2,p); my(x=n/L-CHL); if(x*pprev>0, if(pprev>0,print1(p,", ");np++; if(np>nterms,return)); pprev=-pprev)))};
    a347278(10,halicon([0,2])) \\ computing 30 terms takes about 5 minutes

A347279 First member p(m) of the m-th twin prime pair such that d(m) < 0 and d(m-1) > 0, with d(k) = k/Integral_{x=2..p(k)} 1/log(x)^2 dx - C, C = 2*A005597 = A114907.

Original entry on oeis.org

1371911, 1372757, 1393919, 1417991, 1425881, 1428671, 1429247, 1429859, 1430711, 1495379, 1502687, 1503317, 1510217, 35278601, 35280029, 35446781, 35463497, 35468789, 35469779, 35472137, 45225161, 45274751, 45276689, 45306641, 45324551, 45336407, 45336761, 45337517
Offset: 1

Views

Author

Hugo Pfoertner, Aug 26 2021

Keywords

Comments

See A347278 for more information.

Crossrefs

Programs

  • PARI
    \\ see A347278 for auxiliary functions halicon and Li.
    a347279(nterms,CHL) = {my(n=2,pprev=1,np=0);
    forprime(p=11,, if(p%6!=1&&ispseudoprime(p+2), n++; L=Li(2,p); my(x=n/L-CHL); if(x*pprev>0, if(pprev<0,print1(p,", "); np++; if(np>nterms,return)); pprev=-pprev)))};
    a347279(10, halicon([0,2]))

Formula

A347278(n) < a(n) < A347278(n+1).

A001359 Lesser of twin primes.

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607
Offset: 1

Views

Author

Keywords

Comments

Also, solutions to phi(n + 2) = sigma(n). - Conjectured by Jud McCranie, Jan 03 2001; proved by Reinhard Zumkeller, Dec 05 2002
The set of primes for which the weight as defined in A117078 is 3 gives this sequence except for the initial 3. - Rémi Eismann, Feb 15 2007
The set of lesser of twin primes larger than three is a proper subset of the set of primes of the form 3n - 1 (A003627). - Paul Muljadi, Jun 05 2008
It is conjectured that A113910(n+4) = a(n+2) for all n. - Creighton Dement, Jan 15 2009
I would like to conjecture that if f(x) is a series whose terms are x^n, where n represents the terms of sequence A001359, and if we inspect {f(x)}^5, the conjecture is that every term of the expansion, say a_n * x^n, where n is odd and at least equal to 15, has a_n >= 1. This is not true for {f(x)}^k, k = 1, 2, 3 or 4, but appears to be true for k >= 5. - Paul Bruckman (pbruckman(AT)hotmail.com), Feb 03 2009
A164292(a(n)) = 1; A010051(a(n) - 2) = 0 for n > 1. - Reinhard Zumkeller, Mar 29 2010
From Jonathan Sondow, May 22 2010: (Start)
About 15% of primes < 19000 are the lesser of twin primes. About 26% of Ramanujan primes A104272 < 19000 are the lesser of twin primes.
About 46% of primes < 19000 are Ramanujan primes. About 78% of the lesser of twin primes < 19000 are Ramanujan primes.
A reason for the jumps is in Section 7 of "Ramanujan primes and Bertrand's postulate" and in Section 4 of "Ramanujan Primes: Bounds, Runs, Twins, and Gaps". (End)
Primes generated by sequence A040976. - Odimar Fabeny, Jul 12 2010
Primes of the form 2*n - 3 with 2*n - 1 prime n > 2. Primes of the form (n^2 - (n-2)^2)/2 - 1 with (n^2 - (n-2)^2)/2 + 1 prime so sum of two consecutive odd numbers/2 - 1. - Pierre CAMI, Jan 02 2012
Conjecture: For any integers n >= m > 0, there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) (i.e., (a(m), ..., a(n)) in base b) is prime; moreover, when m = 1 there is such an integer b < (n+6)^2. - Zhi-Wei Sun, Mar 26 2013
Except for the initial 3, all terms are congruent to 5 mod 6. One consequence of this is that no term of this sequence appears in A030459. - Alonso del Arte, May 11 2013
Aside from the first term, all terms have digital root 2, 5, or 8. - J. W. Helkenberg, Jul 24 2013
The sequence provides all solutions to the generalized Winkler conjecture (A051451) aside from all multiples of 6. Specifically, these solutions start from n = 3 as a(n) - 3. This gives 8, 14, 26, 38, 56, ... An example from the conjecture is solution 38 from twin prime pairs (3, 5), (41, 43). - Bill McEachen, May 16 2014
Conjecture: a(n)^(1/n) is a strictly decreasing function of n. Namely a(n+1)^(1/(n+1)) < a(n)^(1/n) for all n. This conjecture is true for all a(n) <= 1121784847637957. - Jahangeer Kholdi and Farideh Firoozbakht, Nov 21 2014
a(n) are the only primes, p(j), such that (p(j+m) - p(j)) divides (p(j+m) + p(j)) for some m > 0, where p(j) = A000040(j). For all such cases m=1. It is easy to prove, for j > 1, the only common factor of (p(j+m) - p(j)) and (p(j+m) + p(j)) is 2, and there are no common factors if j = 1. Thus, p(j) and p(j+m) are twin primes. Also see A067829 which includes the prime 3. - Richard R. Forberg, Mar 25 2015
Primes prime(k) such that prime(k)! == 1 (mod prime(k+1)) with the exception of prime(991) = 7841 and other unknown primes prime(k) for which (prime(k)+1)*(prime(k)+2)*...*(prime(k+1)-2) == 1 (mod prime(k+1)) where prime(k+1) - prime(k) > 2. - Thomas Ordowski and Robert Israel, Jul 16 2016
For the twin prime criterion of Clement see the link. In Ribenboim, pp. 259-260 a more detailed proof is given. - Wolfdieter Lang, Oct 11 2017
Conjecture: Half of the twin prime pairs can be expressed as 8n + M where M > 8n and each value of M is a distinct composite integer with no more than two prime factors. For example, when n=1, M=21 as 8 + 21 = 29, the lesser of a twin prime pair. - Martin Michael Musatov, Dec 14 2017
For a discussion of bias in the distribution of twin primes, see my article on the Vixra web site. - Waldemar Puszkarz, May 08 2018
Since 2^p == 2 (mod p) (Fermat's little theorem), these are primes p such that 2^p == q (mod p), where q is the next prime after p. - Thomas Ordowski, Oct 29 2019, edited by M. F. Hasler, Nov 14 2019
The yet unproved "Twin Prime Conjecture" states that this sequence is infinite. - M. F. Hasler, Nov 14 2019
Lesser of the twin primes are the set of elements that occur in both A162566, A275697. Proof: A prime p will only have integer solutions to both (p+1)/g(p) and (p-1)/g(p) when p is the lesser of a twin prime, where g(p) is the gap between p and the next prime, because gcd(p+1,p-1) = 2. - Ryan Bresler, Feb 14 2021
From Lorenzo Sauras Altuzarra, Dec 21 2021: (Start)
J. A. Hervás Contreras observed the subsequence 11, 311, 18311, 1518311, 421518311... (see the links), which led me to conjecture the following statements.
I. If i is an integer greater than 2, then there exist positive integers j and k such that a(j) equals the concatenation of 3k and a(i).
II. If k is a positive integer, then there exist positive integers i and j such that a(j) equals the concatenation of 3k and a(i).
III. If i, j, and r are positive integers such that i > 2 and a(j) equals the concatenation of r and a(i), then 3 divides r. (End)

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 81.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 192-197.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 111-112.

Crossrefs

Subsequence of A003627.
Cf. A104272 (Ramanujan primes), A178127 (lesser of twin Ramanujan primes), A178128 (lesser of twin primes if it is a Ramanujan prime).

Programs

  • Haskell
    a001359 n = a001359_list !! (n-1)
    a001359_list = filter ((== 1) . a010051' . (+ 2)) a000040_list
    -- Reinhard Zumkeller, Feb 10 2015
    
  • Magma
    [n: n in PrimesUpTo(1610) | IsPrime(n+2)];  // Bruno Berselli, Feb 28 2011
    
  • Maple
    select(k->isprime(k+2),select(isprime,[$1..1616])); # Peter Luschny, Jul 21 2009
    A001359 := proc(n)
       option remember;
       if n = 1
          then 3;
       else
          p := nextprime(procname(n-1)) ;
          while not isprime(p+2) do
             p := nextprime(p) ;
          end do:
          p ;
       end if;
    end proc: # R. J. Mathar, Sep 03 2011
  • Mathematica
    Select[Prime[Range[253]], PrimeQ[# + 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
    a[n_] := a[n] = (p = NextPrime[a[n - 1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p); a[1] = 3; Table[a[n], {n, 51}]  (* Jean-François Alcover, Dec 13 2011, after R. J. Mathar *)
    nextLesserTwinPrime[p_Integer] := Block[{q = p + 2}, While[NextPrime@ q - q > 2, q = NextPrime@ q]; q]; NestList[nextLesserTwinPrime@# &, 3, 50] (* Robert G. Wilson v, May 20 2014 *)
    Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 04 2021 *)
    q = Drop[Prepend[p = Prime[Range[100]], 2], -1];
    Flatten[q[[#]] & /@ Position[p - q, 2]] (* Horst H. Manninger, Mar 28 2021 *)
  • PARI
    A001359(n,p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0,); p-2}
    /* The following gives a reasonably good estimate for any value of n from 1 to infinity; compare to A146214. */
    A001359est(n) = solve( x=1,5*n^2/log(n+1), 1.320323631693739*intnum(t=2.02,x+1/x,1/log(t)^2)-log(x) +.5 - n)
    /* The constant is A114907; the expression in front of +.5 is an estimate for A071538(x) */ \\  M. F. Hasler, Dec 10 2008
    
  • Python
    from sympy import primerange, isprime
    print([n for n in primerange(1, 2001) if isprime(n + 2)]) # Indranil Ghosh, Jul 20 2017

Formula

a(n) = A077800(2n-1).
A001359 = { n | A071538(n-1) = A071538(n)-1 }; A071538(A001359(n)) = n. - M. F. Hasler, Dec 10 2008
A001359 = { prime(n) : A069830(n) = A087454(n) }. - Juri-Stepan Gerasimov, Aug 23 2011
a(n) = prime(A029707(n)). - R. J. Mathar, Feb 19 2017

A005597 Decimal expansion of the twin prime constant C_2 = Product_{ p prime >= 3 } (1-1/(p-1)^2).

Original entry on oeis.org

6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, 3, 4, 1, 3, 3, 1, 9, 4, 4, 8, 4, 2, 3, 3, 3, 5, 4, 0, 5, 6, 4, 2, 3, 0, 4, 4, 9, 5, 2, 7, 7, 1, 4, 3, 7, 6, 0, 0, 3, 1, 4, 1, 3, 8, 3, 9, 8, 6, 7, 9, 1, 1, 7, 7, 9
Offset: 0

Views

Author

Keywords

Comments

C_2 = Product_{ p prime > 2} (p * (p-2) / (p-1)^2) is the 2-tuple case of the Hardy-Littlewood prime k-tuple constant (part of First H-L Conjecture): C_k = Product_{ p prime > k} (p^(k-1) * (p-k) / (p-1)^k).
Although C_2 is commonly called the twin prime constant, it is actually the prime 2-tuple constant (prime pair constant) which is relevant to prime pairs (p, p+2m), m >= 1.
The Hardy-Littlewood asymptotic conjecture for Pi_2m(n), the number of prime pairs (p, p+2m), m >= 1, with p <= n, claims that Pi_2m(n) ~ C_2(2m) * Li_2(n), where Li_2(n) = Integral_{2, n} (dx/log^2(x)) and C_2(2m) = 2 * C_2 * Product_{p prime > 2, p | m} (p-1)/(p-2), which gives: C_2(2) = 2 * C_2 as the prime pair (p, p+2) constant, C_2(4) = 2 * C_2 as the prime pair (p, p+4) constant, C_2(6) = 2* (2/1) * C_2 as the prime pair (p, p+6) constant, C_2(8) = 2 * C_2 as the prime pair (p, p+8) constant, C_2(10) = 2 * (4/3) * C_2 as the prime pair (p, p+10) constant, C_2(12) = 2 * (2/1) * C_2 as the prime pair (p, p+12) constant, C_2(14) = 2 * (6/5) * C_2 as the prime pair (p, p+14) constant, C_2(16) = 2 * C_2 as the prime pair (p, p+16) constant, ... and, for i >= 1, C_2(2^i) = 2 * C_2 as the prime pair (p, p+2^i) constant.
C_2 also occurs as part of other Hardy-Littlewood conjectures related to prime pairs, e.g., the Hardy-Littlewood conjecture concerning the distribution of the Sophie Germain primes (A156874) on primes p such that 2p+1 is also prime.
Another constant related to the twin primes is Viggo Brun's constant B (sometimes also called the twin primes Viggo Brun's constant B_2) A065421, where B_2 = Sum (1/p + 1/q) as (p,q) runs through the twin primes.
Reciprocal of the Selberg-Delange constant A167864. See A167864 for additional comments and references. - Jonathan Sondow, Nov 18 2009
C_2 = Product_{prime p>2} (p-2)p/(p-1)^2 is an analog for primes of Wallis' product 2/Pi = Product_{n=1 to oo} (2n-1)(2n+1)/(2n)^2. - Jonathan Sondow, Nov 18 2009
One can compute a cubic variant, product_{primes >2} (1-1/(p-1)^3) = 0.855392... = (2/3) * 0.6601618...* 1.943596... by multiplying this constant with 2/3 and A082695. - R. J. Mathar, Apr 03 2011
Cohen (1998, p. 7) referred to this number as the "twin prime and Goldbach constant" and noted that, conjecturally, the number of twin prime pairs (p,p+2) with p <= X tends to 2*C_2*X/log(X)^2 as X tends to infinity. - Artur Jasinski, Feb 01 2021

Examples

			0.6601618158468695739278121100145557784326233602847334133194484233354056423...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 11.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 84-93, 133.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A8.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 194, 263-264.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A065645 (continued fraction), A065646 (denominators of convergents to twin prime constant), A065647 (numerators of convergents to twin prime constant), A062270, A062271, A114907, A065418 (C_3), A167864, A000010, A008683.

Programs

  • Mathematica
    s[n_] := (1/n)*N[ Sum[ MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[ (Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, 160}]; RealDigits[C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 15 2012, after PARI *)
    digits = 105; f[n_] := -2*(2^n-1)/(n+1); C2 = Exp[NSum[f[n]*(PrimeZetaP[n+1] - 1/2^(n+1)), {n, 1, Infinity}, NSumTerms -> 5 digits, WorkingPrecision -> 5 digits]]; RealDigits[C2, 10, digits][[1]] (* Jean-François Alcover, Apr 16 2016, updated Apr 24 2018 *)
  • PARI
    \p1000; 175/256*prod(k=2,500,(zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k,d,moebius(d)*2^(k/d))/k))
    
  • PARI
    prodeulerrat(1-1/(p-1)^2, 1, 3) \\ Amiram Eldar, Mar 12 2021

Formula

Equals Product_{k>=2} (zeta(k)*(1-1/2^k))^(-Sum_{d|k} mu(d)*2^(k/d)/k). - Benoit Cloitre, Aug 06 2003
Equals 1/A167864. - Jonathan Sondow, Nov 18 2009
Equals Sum_{k>=1} mu(2*k-1)/phi(2*k-1)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010) (Bruckman, 2001). - Amiram Eldar, Jan 14 2022

Extensions

More terms from Vladeta Jovovic, Nov 08 2001
Commented and edited by Daniel Forgues, Jul 28 2009, Aug 04 2009, Aug 12 2009
PARI code removed by D. S. McNeil, Dec 26 2010

A071538 Number of twin prime pairs (p, p+2) with p <= n.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Reinhard Zumkeller, May 30 2002

Keywords

Comments

The convention is followed that a twin prime is <= n if its smaller member is <= n.
Except for (3, 5), every pair of twin primes is congruent (-1, +1) (mod 6). - Daniel Forgues, Aug 05 2009
This function is sometimes known as pi_2(n). If this name is used, there is no obvious generalization for pi_k(n) for k > 2. - Franklin T. Adams-Watters, Jun 01 2014

Examples

			a(30) = 5, since (29,31) is included along with (3,5), (5,7), (11,13) and (17,19).
		

References

  • S. Lang, The Beauty of Doing Mathematics, pp. 12-15; 21-22, Springer-Verlag NY 1985.

Crossrefs

Programs

  • Mathematica
    primePi2[1] = 0; primePi2[n_] := primePi2[n] = primePi2[n - 1] + Boole[PrimeQ[n] && PrimeQ[n + 2]]; Table[primePi2[n], {n, 100}] (* T. D. Noe, May 23 2013 *)
  • PARI
    A071538(n) = local(s=0,L=0); forprime(p=3,n+2,L==p-2 & s++; L=p); s
    /* For n > primelimit, one may use: */ A071538(n) = { local(s=isprime(2+n=precprime(n))&n,L); while( n=precprime(L=n-2),L==n & s++); s }
    /* The following gives a reasonably good estimate for small and for large values of n (cf. A007508): */
    A071538est(n) = 1.320323631693739*intnum(t=2,n+1/n,1/log(t)^2)-log(n) /* (The constant 1.320... is A114907.) */ \\ M. F. Hasler, Dec 10 2008

Extensions

Definition edited by Daniel Forgues, Jul 29 2009

A191996 Numerators of partial products of a Hardy-Littlewood constant.

Original entry on oeis.org

2, 3, 45, 175, 693, 11011, 2807805, 302307005, 402243205, 714186915, 42803602439, 11086133031701, 5908908905896633, 1488200914442251997, 3041106216468949733, 16213234917387714257, 21611220383343195817, 77778782159652161745383, 67745319261057032880228593
Offset: 2

Views

Author

Wolfdieter Lang, Jun 21 2011

Keywords

Comments

The rational partial products are r(n)=a(n)/A191997(n), n>=1.
The limit r(n), n->infinity, approximately 1.3203236 = A114907, is the constant C(f_1,f_2) appearing in the Hardy-Littlewood conjecture (also called Bateman-Horn conjecture) for the integer polynomials f_1=x and f_2=x+2 (relevant for twin primes). See the Conrad reference Example 1, p. 134, also for the original references.
Essentially the same as A062270. - R. J. Mathar, Jun 23 2011

Examples

			The rationals r(n) (in lowest terms) are 2, 3/2, 45/32, 175/128, 693/512, 11011/8192,...
		

References

  • Keith Conrad, Hardy-Littlewood constants, pp. 133-154 in: Mathematical properties of sequences and other combinatorial structures, edts. Jong-Seon No et al., Kluwer, Boston/Dordrecht/London, 2003.

Crossrefs

Formula

a(n) = numerator(r(n)), with the rational r(n):=2*product(1-1/(p(j)-1)^2,j=2..n), with the primes p(j):=A000040(j).

A278972 Twice the twin primes.

Original entry on oeis.org

6, 10, 14, 22, 26, 34, 38, 58, 62, 82, 86, 118, 122, 142, 146, 202, 206, 214, 218, 274, 278, 298, 302, 358, 362, 382, 386, 394, 398, 454, 458, 478, 482, 538, 542, 562, 566, 622, 626, 694, 698, 838, 842, 862, 866, 922, 926, 1042, 1046, 1138, 1142, 1198, 1202, 1234, 1238, 1282, 1286
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2016

Keywords

Comments

This is one of the sequences found in the pyramid described in A245092. For more information about the pyramid see A237593 and A262626.

Crossrefs

Union of A108605 and A176810.
Subsequence of A100484.

Programs

  • Mathematica
    2Union[Flatten[Select[Partition[Prime[Range[150]],2,1],#[[2]]-#[[1]]==2&]]] (* Harvey P. Dale, Apr 18 2022 *)

Formula

a(n) = 2 * A001097(n).

A380947 Numerators of rational coefficients which are ratio of Brent's coefficients -A[n,2]/A343480.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 5, 5, 23, 39, 63, 17, 209, 185, 1207, 127, 765, 15543, 2499, 1139, 2257, 6327, 309, 21527, 2189, 64273, 6127, 883, 21681, 3835077, 30537, 188579, 7091843, 47895, 8447, 556651, 541, 1978953, 22046359, 1726463, 188751, 45916389, 575107, 2289527, 968180019, 283521, 50207679, 7450167293, 385389, 86547757
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2025

Keywords

Comments

Brent's coefficients -A[n,2]/A343480 are rationals = A380947(n)/A380948(n).
Number of primes with distance to next prime = 2*n between two particular numbers j and k is ~ equal Integrate_{s,j,k} Sum_{m,1,m_max} A[n,m]/log(s)^(m+1).
Brent's coefficients A[n,1]/A114907 = B[n,1]/A114907 are equal to A380839(n)/A307410(n).
Real Brent's coefficients A[n,2] = -A343480*A380947(n)/A380948(n).
Integer Brent's coefficients T[n,2] = A381085(n).
Maximal values of the coefficients A380947(n)/A380948(n) occurs when n=105*k where k=1,2,3,4,....
Minimal values of the coefficients A380947(n)/A380948(n) occurs when n=2^k where k=0, 1,2,3,4,....

Crossrefs

Programs

  • Mathematica
    (* starting vector tr2 taken from A381085 *)
    tr2 ={0, 0, 2, 4, 6, 56, 40, 40, 92, 624, 504, 10880, 6688, 7400, 19312};
    ww = {}; long=15;Do[kk = PrimePi[n + 1]; prod = 1;
     Do[prod = prod (Prime[n] - 1), {n, 2, kk}];
     AppendTo[ww, prod], {n, 1, long}]; sr2 = {}; Do[
     AppendTo[sr2, tr2[[n]]/ww[[n]]], {n, 1, long}]; fr2 = {}; uu = {}; Do[
     pr1 = 1; kk = PrimePi[p + 1]; pr3 = 1;
     Do[pr2 = 1; jj = Min[2, Prime[n] - 2];
      Do[pr2 = pr2 (1 - m/((Prime[n] - 1) (Prime[n] - m))), {m, 1, jj}];
      pr1 = pr1 pr2; pr3 = pr3 Prime[n]/(Prime[n] - 1), {n, 2, kk}];
     pr3 = (-2 pr3)^2/pr1; AppendTo[fr2, pr3], {p, 1, long}]; ar2 = {}; Do[
     AppendTo[ar2, fr2[[n]] sr2[[n]]/12], {n, 1, long}]; Numerator[ar2]

A380948 Denominators of rational coefficients which are ratio of Brent's coefficients -A[n,2]/A343480.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 4, 8, 16, 2, 40, 32, 80, 20, 112, 1120, 320, 112, 112, 640, 32, 1120, 160, 5600, 280, 64, 1820, 116480, 2240, 14560, 232960, 3136, 364, 18200, 34, 116480, 618800, 76160, 10640, 1074944, 30464, 110656, 18811520, 13600, 2434432, 181060880, 15232, 3043040
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2025

Keywords

Comments

Brent's coefficients -A[n,2]/A343480 are rationals = A380947(n)/ A380948(n).
Brent's coefficients are used in formulas of number of primes with particular distance to next prime =2*n.
Brent's coefficients A[n,1]/A114907 = B[n,1]/A114907 are equal to A380839(n)/A307410(n).

Crossrefs

A238734 Log of twice the twin prime constant, C_2, log(2*A005597).

Original entry on oeis.org

2, 7, 7, 8, 7, 6, 8, 8, 2, 0, 7, 3, 2, 3, 1, 9, 6, 1, 9, 3, 2, 3, 1, 0, 8, 6, 6, 7, 0, 3, 2, 5, 3, 4, 2, 0, 3, 6, 0, 2, 0, 6, 2, 9, 4, 1, 4, 7, 3, 6, 8, 2, 9, 8, 8, 2, 4, 5, 2, 7, 0, 5, 3, 3, 6, 7, 7, 1, 6, 4, 9, 8, 0, 0, 8, 2, 8, 3, 5, 0, 7, 5, 9, 9, 6, 6, 3, 7, 4, 8, 8, 4, 6, 9, 1, 0, 3, 9, 4, 1, 6, 6, 9, 8, 0, 9, 2, 9, 5, 8, 6, 6, 1
Offset: 0

Views

Author

John W. Nicholson, Mar 03 2014

Keywords

Comments

The value occurs as term in equation (15) in the Wolf paper. - Ralf Stephan, Mar 28 2014

Examples

			0.2778768820732319619323108667032534203602062941473682988245270533677164980...
		

Crossrefs

Programs

  • Mathematica
    digits = 113;
    s[n_] := (1/n)*N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 50];
    C2 = (175/256)*Product[(Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, digits + 50}];
    RealDigits[Log[2 C2]][[1]][[1 ;; digits]] (* Jean-François Alcover, Feb 16 2019 *)
  • PARI
    default(realprecision,1000);
    result={175/256*prod(k=2, 500, (zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k, d, moebius(d)*2^(k/d))/k))};log(2*result)
    
  • PARI
    log(2 * prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Mar 16 2021

Formula

Equals log(2*A005597).
Showing 1-10 of 10 results.