A347278 First member p(m) of the m-th twin prime pair such that d(m) > 0 and d(m-1) < 0, with d(k) = k/Integral_{x=2..p(k)} 1/log(x)^2 dx - C, C = 2*A005597 = A114907.
1369391, 1371989, 1378217, 1393937, 1418117, 1426127, 1428767, 1429367, 1430291, 1494509, 1502141, 1502717, 1506611, 1510307, 35278697, 35287001, 35447171, 35468429, 35468861, 35470271, 35595869, 45274121, 45276227, 45304157, 45306827, 45324569, 45336461, 45336917
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..12135
- Wikipedia, Twin prime, First Hardy-Littlewood conjecture.
- Marek Wolf, The Skewes number for twin primes: counting sign changes of pi_2(x)-C_2 Li_2(x), arXiv:1107.2809 [math.NT], 14 Jul 2011.
Crossrefs
Programs
-
PARI
halicon(h) = {my(w=Set(vecsort(h)), n=#w, wmin=vecmin(w), distres(v,p)=#Set(v%p)); for(k=1,n, w[k]=w[k]-wmin); my(plim=nextprime(vecmax(w))); prodeuler(p=2, plim, (1-distres(w,p)/p)/(1-1/p)^n) * prodeulerrat((1-n/p)/(1-1/p)^n, 1, nextprime(plim+1))}; \\ k-tuple constant Li(x, n)=intnum(t=2, n, 1/log(t)^x); \\ logarithmic integral a347278(nterms,CHL)={my(n=1,pprev=1,np=0); forprime(p=5,, if(p%6!=1&&ispseudoprime(p+2), n++; L=Li(2,p); my(x=n/L-CHL); if(x*pprev>0, if(pprev>0,print1(p,", ");np++; if(np>nterms,return)); pprev=-pprev)))}; a347278(10,halicon([0,2])) \\ computing 30 terms takes about 5 minutes
Comments