A014551 Jacobsthal-Lucas numbers.
2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 2147483647, 4294967297, 8589934591
Offset: 0
References
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. pp. 180, 255.
- Lind and Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. (General material on subshifts of finite type)
- Kritkhajohn Onphaeng and Prapanpong Pongsriiam. Jacobsthal and Jacobsthal-Lucas Numbers and Sums Introduced by Jacobsthal and Tverberg. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.6.
- Abdelmoumène Zekiri, Farid Bencherif, Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Kunle Adegoke, Robert Frontczak, and Taras Goy, Partial sum of the products of the Horadam numbers with subscripts in arithmetic progression, Notes on Num. Theor. and Disc. Math. (2021) Vol. 27, No. 2, 54-63.
- Tewodros Amdeberhan, A note on Fibonacci-type polynomials, arXiv:0811.4652 [math.NT], 2008.
- Hacène Belbachir, Amine Belkhir, and Ihab-Eddin Djellas, Permanent of Toeplitz-Hessenberg Matrices with Generalized Fibonacci and Lucas entries, Applications and Applied Mathematics: An International Journal (AAM 2022), Vol. 17, Iss. 2, Art. 15, 558-570.
- Paula Catarino, Helena Campos, and Paulo Vasco. On the Mersenne sequence. Annales Mathematicae et Informaticae, 46 (2016), pp. 37-53.
- Charles K. Cook and Michael R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae, 41 (2013), pp. 27-39.
- Fatih Erduvan and Refik Keskin, Fibonacci And Lucas Numbers Which Are Product Of Two Jacobsal-Lucas Numbers [sic], Appl. Math. E-Notes (2023) Vol. 23, 60-70.
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Élis Gardel da Costa Mesquita, Eudes Antonio Costa, Paula M. M. C. Catarino, and Francisco R. V. Alves, Jacobsthal-Mulatu Numbers, Latin Amer. J. Math. (2025) Vol. 4, No. 1, 23-45. See p. 24.
- A. F. Horadam, Jacobsthal and Pell Curves, Fib. Quart. 26, 79-83, 1988.
- A. F. Horadam, Jacobsthal Representation Numbers, Fib Quart. 34, 40-54, 1996.
- D. Jhala, G. P. S. Rathore, and K. Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 4, 119-124.
- Thomas Koshy and Ralph P. Grimaldi, Ternary words and Jacobsthal numbers, Fib. Quart., 55 (No. 2, 2017), 129-136.
- Kritkhajohn Onphaeng, Tammatada Khemaratchatakumthorn, and Prapanpong Pongsriiam, Inequalities for Inclusion-Exclusion-Like Sums Involving the Ceiling and the Nearest Integer Functions, Integers (2025) Vol. 25, Art. No. A45. See p. 3.
- Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 16.
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), Article 01.2.1.
- M. Rahmani, The Akiyama-Tanigawa matrix and related combinatorial identities, Linear Algebra and its Applications 438 (2013) 219-230. - From _N. J. A. Sloane_, Dec 26 2012
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 41.
- Yüksel Soykan, On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in Research (2019) Vol. 20, No. 2, 1-15, Article AIR.51824.
- Yüksal Soykan, On Summing Formulas for Horadam Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 8, Issue 1, 45-61.
- Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104.
- Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441.
- Yüksel Soykan, Closed Formulas for the Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of Sum_{k=0..n} W_k^3 and Sum_{k=1..n} W_(-k)^3, Archives of Current Research International (2020) Vol. 20, Issue 2, 58-69.
- Yüksel Soykan, A Study on Generalized Fibonacci Numbers: Sum Formulas Sum_{k=0..n} k * x^k * W_k^3 and Sum_{k=1..n} k * x^k W_-k^3 for the Cubes of Terms, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 297-331.
- Yüksel Soykan, On Generalized (r, s)-numbers, Int. J. Adv. Appl. Math. and Mech. (2020) Vol. 8, No. 1, 1-14.
- Yüksel Soykan, Erkan Taşdemir, and İnci Okumuş, On Dual Hyperbolic Numbers With Generalized Jacobsthal Numbers Components, Zonguldak Bülent Ecevit University, (Zonguldak, Turkey, 2019).
- Anetta Szynal-Liana, Iwona Włoch, and Mirosław Liana, Generalized commutative quaternion polynomials of the Fibonacci type, Annales Math. Sect. A, Univ. Mariae Curie-Skłodowska (Poland 2022) Vol. 76, No. 2, 33-44.
- Elif Tan, Luka Podrug, and Vesna Iršič Chenoweth, Horadam-Lucas Cubes, Axioms (2024) Vol. 13, No. 12, 837.
- Kai Wang, On Horadam Sequences and Related Infinite Series, (2020).
- Kai Wang, General Identities for Horadam Sequences, (2020).
- Eric Weisstein's World of Mathematics, Jacobsthal Number.
- Wikipedia, Lucas sequence.
- OEIS Wiki, Autosequence.
- Volkan Yildiz, Some divisibility properties of Jacobsthal numbers, arXiv:2212.08814 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,2).
- Index entries for Lucas sequences.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Haskell
a014551 n = a000079 n + a033999 n a014551_list = map fst $ iterate (\(x,s) -> (2 * x - 3 * s, -s)) (2, 1) -- Reinhard Zumkeller, Jan 02 2013
-
Magma
[2^n + (-1)^n: n in [0..30]]; // G. C. Greubel, Dec 17 2017
-
Mathematica
f[n_]:=2/(n+1);x=4;Table[x=f[x];Denominator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *) nxt[{n_,a_}]:={n+1,2a-3(-1)^(n+1)}; Transpose[NestList[nxt,{1,2},40]] [[2]] (* Harvey P. Dale, May 27 2013 *) LinearRecurrence[{1, 2}, {2, 1}, 40] (* Jean-François Alcover, Jan 07 2019 *)
-
PARI
a(n)=2^n+(-1)^n \\ Charles R Greathouse IV, Nov 20 2012
-
Sage
[lucas_number2(n,1,-2) for n in range(0, 32)] # Zerinvary Lajos, Apr 30 2009
Formula
a(n+1) = 2 * a(n) - (-1)^n * 3.
From Len Smiley, Dec 07 2001: (Start)
a(n) = 2^n + (-1)^n.
G.f.: (2-x)/(1-x-2*x^2). (End)
E.g.f.: exp(x) + exp(-2*x) produces a signed version. - Paul Barry, Apr 27 2003
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-1, 2*k)*3^(2*k)/2^(n-2). - Paul Barry, Feb 21 2003
0, 1, 5, 7 ... is 2^n - 2*0^n + (-1)^n, the 2nd inverse binomial transform of (2^n-1)^2 (A060867). - Paul Barry, Sep 05 2003
a(n) = 2*T(n, i/(2*sqrt(2))) * (-i*sqrt(2))^n with i^2=-1. - Paul Barry, Nov 17 2003
a(0)=2, a(1)=1, a(n) = a(n-1) + 2*a(n-2) for n > 1. - Philippe Deléham, Nov 07 2006
a(2*n+1) = Product_{d|(2*n+1)} cyclotomic(d,2). a(2^k*(2*n+1)) = Product_{d|(2*n+1)} cyclotomic(2*d,2^(2^k)). - Miklos Kristof, Mar 12 2007
a(n) = 2^{(n-1)/2}F_{n-1}(1/sqrt(2)) + 2^{(n+2)/2}F_{n-2}(1/sqrt(2)). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
E.g.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k*(k+1)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
G.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
a(n) = sqrt(9*(A001045)^2 + (-1)^n*2^(n+2)). - Vladimir Shevelev, Mar 13 2013
G.f.: 2 + G(0)*x*(1+4*x)/(2-x), where G(k) = 1 + 1/(1 - x*(9*k-1)/( x*(9*k+8) - 2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 13 2013
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 9*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
For n >= 1: a(n) = A006995(2^((n+2)/2)) when n is even, a(n) = A006995(3*2^((n-1)/2) - 1) when n is odd. - Bob Selcoe, Sep 04 2017
For n >= 0, 1/(2*a(n+1)) = Sum_{m>=n} a(m)/(a(m+1)*a(m+2)). - Kai Wang, Mar 03 2020
For 4 > h >= 0, k >= 0, a(4*k+h) mod 5 = a(h) mod 5. - Kai Wang, May 06 2020
From Kai Wang, May 30 2020: (Start)
(2 - a(n+1)/a(n))/9 = Sum_{m>=n} (-2)^m/(a(m)*a(m+1)).
a(n)^2 = a(2*n) + 2*(-2)^n.
a(n)^2 = 9*A001045(n)^2 + 4*(-2)^n.
a(2*n) = 9*A001045(n)^2 + 2*(-2)^n.
a(m+n) + (-2)^n*a(m-n) = a(m)*a(n).
a(m+n)*a(m-n) - a(m)*a(m) = 9*(-2)^(m-n)*A001045(n)^2.
a(m+1)*a(n) - a(m)*a(n+1) = 9*(-2)^n*A001045(m-n). (End)
a(n) = F(n+1) + F(n-1) + Sum_{k=0..(n-2)} a(k)*F(n-1-k) for F(n) the Fibonacci numbers and for n > 1. - Greg Dresden, Jun 03 2020
Comments