A027760 Denominator of Sum_{p prime, p-1 divides n} 1/p.
2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2
Offset: 1
Examples
1/2, 5/6, 1/2, 31/30, 1/2, 41/42, 1/2, 31/30, 1/2, 61/66, 1/2, 3421/2730, 1/2, 5/6, 1/2, 557/510, ...
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Thomas Clausen, Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen, Astr. Nachr. 17 (1840), 351-352. [_Peter Luschny_, Apr 29 2009]
- S. C. Locke and A. Mandel, Problem E 2901, American Mathematical Monthly 88 (1981), p. 538. Solution in Vol. 90 (1983), pp. 212-213. [Daniel M. Rosenblum (DMRosenblum(AT)world.oberlin.edu), Jul 31 2008]
- D. M. Rosenblum, Problem 1019, Mathematics Magazine 50 (1977), p. 164. Solution by T. Orloff in Vol. 52 (1979), p. 50.
- Wikipedia, Bernoulli number
Programs
-
Maple
A027760 := proc(n) local s,p; s := 0 ; p := 2; while p <= n+1 do if n mod (p-1) = 0 then s := s+1/p; fi; p := nextprime(p) ; od: denom(s) ; end: # R. J. Mathar, Aug 12 2008
-
Mathematica
clausen[n_] := Product[i, {i, Select[ Map[ # + 1 &, Divisors[n]], PrimeQ]}] Table[clausen[i], {i, 1, 20}] (* Peter Luschny, Apr 29 2009 *) f[n_] := Times @@ Select[Divisors@n + 1, PrimeQ]; Array[f, 56] (* Robert G. Wilson v, Apr 25 2012 *)
-
PARI
a(n)=denominator(sumdiv(n,d,if(isprime(d+1),1/(d+1)))) \\ Charles R Greathouse IV, Jul 08 2011
-
PARI
a(n)=my(pr=1);fordiv(n,d,if(isprime(d+1),pr*=d+1));pr \\ Charles R Greathouse IV, Jul 08 2011
-
Sage
def A027760(n): return mul(filter(lambda s: is_prime(s), map(lambda i: i+1, divisors(n)))) [A027760(n) for n in (1..56)] # Peter Luschny, May 23 2013
Formula
a(n) = product_{p prime, p-1 divides n}. - Eric M. Schmidt, Aug 01 2013
a(2n-1) = 2. - Robert G. Wilson v, Jul 23 2018
Extensions
Formula submitted with A141417 added by R. J. Mathar, Nov 17 2010
Comments