cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A005843 The nonnegative even numbers: a(n) = 2n.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 0

Views

Author

Keywords

Comments

-2, -4, -6, -8, -10, -12, -14, ... are the trivial zeros of the Riemann zeta function. - Vivek Suri (vsuri(AT)jhu.edu), Jan 24 2008
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 2-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
A134452(a(n)) = 0; A134451(a(n)) = 2 for n > 0. - Reinhard Zumkeller, Oct 27 2007
Omitting the initial zero gives the number of prime divisors with multiplicity of product of terms of n-th row of A077553. - Ray Chandler, Aug 21 2003
A059841(a(n))=1, A000035(a(n))=0. - Reinhard Zumkeller, Sep 29 2008
(APSO) Alternating partial sums of (a-b+c-d+e-f+g...) = (a+b+c+d+e+f+g...) - 2*(b+d+f...), it appears that APSO(A005843) = A052928 = A002378 - 2*(A116471), with A116471=2*A008794. - Eric Desbiaux, Oct 28 2008
A056753(a(n)) = 1. - Reinhard Zumkeller, Aug 23 2009
Twice the nonnegative numbers. - Juri-Stepan Gerasimov, Dec 12 2009
The number of hydrogen atoms in straight-chain (C(n)H(2n+2)), branched (C(n)H(2n+2), n > 3), and cyclic, n-carbon alkanes (C(n)H(2n), n > 2). - Paul Muljadi, Feb 18 2010
For n >= 1; a(n) = the smallest numbers m with the number of steps n of iterations of {r - (smallest prime divisor of r)} needed to reach 0 starting at r = m. See A175126 and A175127. A175126(a(n)) = A175126(A175127(n)) = n. Example (a(4)=8): 8-2=6, 6-2=4, 4-2=2, 2-2=0; iterations has 4 steps and number 8 is the smallest number with such result. - Jaroslav Krizek, Feb 15 2010
For n >= 1, a(n) = numbers k such that arithmetic mean of the first k positive integers is not integer. A040001(a(n)) > 1. See A145051 and A040001. - Jaroslav Krizek, May 28 2010
Union of A179082 and A179083. - Reinhard Zumkeller, Jun 28 2010
a(k) is the (Moore lower bound on and the) order of the (k,4)-cage: the smallest k-regular graph having girth four: the complete bipartite graph with k vertices in each part. - Jason Kimberley, Oct 30 2011
For n > 0: A048272(a(n)) <= 0. - Reinhard Zumkeller, Jan 21 2012
Let n be the number of pancakes that have to be divided equally between n+1 children. a(n) is the minimal number of radial cuts needed to accomplish the task. - Ivan N. Ianakiev, Sep 18 2013
For n > 0, a(n) is the largest number k such that (k!-n)/(k-n) is an integer. - Derek Orr, Jul 02 2014
a(n) when n > 2 is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
It appears that for n > 2, a(n) = A020482(n) + A002373(n), where all sequences are infinite. This is consistent with Goldbach's conjecture, which states that every even number > 2 can be expressed as the sum of two prime numbers. - Bob Selcoe, Mar 08 2015
Number of partitions of 4n into exactly 2 parts. - Colin Barker, Mar 23 2015
Number of neighbors in von Neumann neighborhood. - Dmitry Zaitsev, Nov 30 2015
Unique solution b( ) of the complementary equation a(n) = a(n-1)^2 - a(n-2)*b(n-1), where a(0) = 1, a(1) = 3, and a( ) and b( ) are increasing complementary sequences. - Clark Kimberling, Nov 21 2017
Also the maximum number of non-attacking bishops on an (n+1) X (n+1) board (n>0). (Cf. A000027 for rooks and queens (n>3), A008794 for kings or A030978 for knights.) - Martin Renner, Jan 26 2020
Integer k is even positive iff phi(2k) > phi(k), where phi is Euler's totient (A000010) [see reference De Koninck & Mercier]. - Bernard Schott, Dec 10 2020
Number of 3-permutations of n elements avoiding the patterns 132, 213, 312 and also number of 3-permutations avoiding the patterns 213, 231, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
a(n) gives the y-value of the integral solution (x,y) of the Pellian equation x^2 - (n^2 + 1)*y^2 = 1. The x-value is given by 2*n^2 + 1 (see Tattersall). - Stefano Spezia, Jul 24 2025

Examples

			G.f. = 2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 529a pp. 71 and 257, Ellipses, 2004, Paris.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.

Crossrefs

a(n)=2*A001477(n). - Juri-Stepan Gerasimov, Dec 12 2009
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), this sequence (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A231200 (boustrophedon transform).

Programs

Formula

G.f.: 2*x/(1-x)^2.
E.g.f.: 2*x*exp(x). - Geoffrey Critzer, Aug 25 2012
G.f. with interpolated zeros: 2x^2/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*sinh(x). - Geoffrey Critzer, Aug 25 2012
Inverse binomial transform of A036289, n*2^n. - Joshua Zucker, Jan 13 2006
a(0) = 0, a(1) = 2, a(n) = 2a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = Sum_{k=1..n} floor(6n/4^k + 1/2). - Vladimir Shevelev, Jun 04 2009
a(n) = A034856(n+1) - A000124(n) = A000217(n) + A005408(n) - A000124(n) = A005408(n) - 1. - Jaroslav Krizek, Sep 05 2009
a(n) = Sum_{k>=0} A030308(n,k)*A000079(k+1). - Philippe Deléham, Oct 17 2011
Digit sequence 22 read in base n-1. - Jason Kimberley, Oct 30 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Dec 23 2011
a(n) = 2*n = Product_{k=1..2*n-1} 2*sin(Pi*k/(2*n)), n >= 0 (undefined product := 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
From Ilya Gutkovskiy, Aug 19 2016: (Start)
Convolution of A007395 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 = (1/2)*A002162 = (1/10)*A016655. (End)
From Bernard Schott, Dec 10 2020: (Start)
Sum_{n>=1} 1/a(n)^2 = Pi^2/24 = A222171.
Sum_{n>=1} (-1)^(n+1)/a(n)^2 = Pi^2/48 = A245058. (End)

A054684 Numbers whose sum of digits is odd.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 131
Offset: 1

Views

Author

Odimar Fabeny, Apr 19 2000

Keywords

Comments

Union of A179083 and A179085; A179081(a(n)) = 1. - Reinhard Zumkeller, Jun 28 2010
Equivalently, integers with an odd number of odd digits. - Bernard Schott, Nov 06 2022

Examples

			1, 3, 5, 7, 9, 10(1), 12(3), 14(5), 16(7), 18(9), 21(3) and so on.
		

Crossrefs

Cf. A054683, A137233 (number of n-digits terms).
Cf. A356929 (even number of even digits).
A294601 (exactly one odd decimal digit) is a subsequence.

Programs

  • Maple
    [seq(`if`(convert(convert(2*n-1,base,10),`+`)::odd, 2*n-1, 2*n-2), n=1..501)];
  • Mathematica
    Select[Range[200],OddQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Nov 27 2021 *)
  • PARI
    is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2 \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    isok(m) = sumdigits(m) % 2; \\ Michel Marcus, Nov 06 2022
    
  • PARI
    a(n) = n=2*(n-1); n + !(sumdigits(n)%2); \\ Kevin Ryde, Nov 07 2022
    
  • Python
    def ok(n): return sum(map(int, str(n)))&1
    print([k for k in range(132) if ok(k)]) # Michael S. Branicky, Nov 06 2022

Formula

a(n) = n * 2 - 1 for the first 5 numbers; a(n) = n * 2 for the second 5 numbers.
From Robert Israel, Jun 27 2017: (Start)
a(n) = 2*n-2 if floor((n-1)/5) is in the sequence, 2*n-1 if not.
G.f. g(x) satisfies g(x) = (1-x)*(1+x+x^2+x^3+x^4)^2*g(x^10)/x^9 + x^2*(2+x^4+3*x^5-x^9+3*x^10)/((1-x)*(1+x^5))^2.
(End)

Extensions

More terms from James Sellers, Apr 19 2000

A179082 Even numbers having an even sum of digits in their decimal representation.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 110, 112, 114, 116, 118, 130, 132, 134, 136, 138, 150, 152, 154, 156, 158, 170, 172, 174, 176, 178, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 220, 222, 224, 226
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 28 2010

Keywords

Comments

a(n) = A014263(n) for n <= 25;
intersection of A005843 and A054683: A059841(a(n))*(1-A179081(a(n)))=1;
complement of A179083 with respect to A005843;
complement of A179084 with respect to A054683;
a(n) mod 2 = 0 and A007953(a(n)) mod 2 = 0.

Programs

  • Mathematica
    Select[Range[0,250,2],EvenQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Mar 19 2012 *)

A179081 Parity of sum of digits of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 28 2010

Keywords

Comments

a(n) = A000035(A007953(n));
characteristic function of numbers with an odd sum of digits in their decimal representation:
a(A054684(n)) = 1; a(A054683(n)) = 0;
a(A179083(n)) = a(A179085(n)) = 1;
a(A179082(n)) = a(A179084(n)) = 0.

Examples

			a(789) = (7+8+9) mod 2 = 0;
a(790) = (7+9+0) mod 2 = 0;
a(791) = (7+9+1) mod 2 = 1.
		

Programs

  • Mathematica
    Array[Mod[Total[IntegerDigits[#]],2]&,110,0] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    a(n) = vecsum(digits(n)) % 2 \\ Jeppe Stig Nielsen, Jan 06 2018

Formula

a(n) = if n<10 then (n mod 2) else a([n/10]) XOR (n mod 2).

A179085 Odd numbers having an odd sum of digits in their decimal representation.

Original entry on oeis.org

1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49, 61, 63, 65, 67, 69, 81, 83, 85, 87, 89, 111, 113, 115, 117, 119, 131, 133, 135, 137, 139, 151, 153, 155, 157, 159, 171, 173, 175, 177, 179, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 221, 223, 225, 227
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 28 2010

Keywords

Comments

a(n) = A030142(n) for n <= 25;
intersection of A005408 and A054684: A000035(a(n))*A179081(a(n))=1;
complement of A179084 with respect to A005408;
complement of A179083 with respect to A054684;
a(n) mod 2 = 1 and A007953(a(n)) mod 2 = 1.

Programs

  • Mathematica
    Select[Range[1,227,2], OddQ[Total[IntegerDigits[#]]] &] (* Jayanta Basu, May 07 2013 *)

A007958 Even numbers with at least one odd digit.

Original entry on oeis.org

10, 12, 14, 16, 18, 30, 32, 34, 36, 38, 50, 52, 54, 56, 58, 70, 72, 74, 76, 78, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Old name was: Even numbers such that some permutation of digits is an odd number.
a(n) = A179083(n) for n <= 30. - Reinhard Zumkeller, Jun 28 2010

Programs

  • Mathematica
    Select[2*Range[100],Or@@OddQ[IntegerDigits[#]]&] (* Harvey P. Dale, Apr 01 2013 *)
  • PARI
    is(n)=n%2==0 && vecsum(Set(digits(n)%2)) \\ Charles R Greathouse IV, Oct 23 2015
    
  • Python
    def ok(n): return n%2 == 0 and set(str(n)) & set("13579") != set()
    print(list(filter(ok, range(163)))) # Michael S. Branicky, Oct 12 2021

Formula

a(n) ~ 2n. - Charles R Greathouse IV, Oct 23 2015

Extensions

New name from Charles R Greathouse IV, Feb 14 2017, based on comment from Harvey P. Dale, Apr 01 2013
Showing 1-6 of 6 results.