cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001813 Quadruple factorial numbers: a(n) = (2n)!/n!.

Original entry on oeis.org

1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0

Views

Author

Keywords

Comments

Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.
Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003
Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Hankel transform is A137565. - Paul Barry, Nov 25 2009
The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - Wolfdieter Lang, Jan 09 2012
From Tom Copeland, Nov 15 2014: (Start)
Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).
Equals A000407*2 with leading 1 added. (End)
a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - Luis Manuel Rivera Martínez, Mar 04 2015
Self-convolution gives A076729. - Vladimir Reshetnikov, Oct 11 2016
For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - Ivan N. Ianakiev, Feb 28 2017
For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017

Examples

			The following permutations of order 8 and their reversals have this property:
  1 7 3 5 2 4 0 6
  1 7 4 2 5 3 0 6
  2 3 7 6 1 0 4 5
  2 4 7 1 6 0 3 5
  3 2 6 7 0 1 5 4
  3 5 1 7 0 6 2 4
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
    
  • Maple
    A001813 := n->(2*n)!/n!;
    A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
    seq(A001813(n), n=0..16);  # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
  • Maxima
    makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
    
  • Python
    from math import factorial
    def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
  • Sage
    [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
    

Formula

E.g.f.: (1-4*x)^(-1/2).
a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2) = A081125(2*n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)) dx, n >= 0. This representation is unique. - Karol A. Penson, Sep 18 2001
Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - Benoit Cloitre, Apr 27 2003
With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - Paul Barry, May 09 2003
a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
For asymptotics, see the Robinson paper.
a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - André F. Labossière, Jun 21 2007
a(n) = 12*A051618(a) n >= 2. - Zerinvary Lajos, Feb 15 2008
a(n) = A000984(n)*A000142(n). - Zerinvary Lajos, Mar 25 2008
a(n) = A016825(n-1)*a(n-1). - Roger L. Bagula, Sep 17 2008
a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);
a(n) = (n+1)!*A000108(n). (End)
a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - Philippe Deléham, Feb 10 2009
G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - Reinhard Zumkeller, Feb 19 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
...
(End)
a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 07 2013
Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - Ilya Gutkovskiy, Nov 10 2016
Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - Amiram Eldar, Feb 20 2021
a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - Peter Luschny, Sep 13 2024
a(n) = 2^n*n!*JacobiP(n, -1/2, -n, 3). - Peter Luschny, Jan 22 2025
G.f.: 2F0(1,1/2;;4x). - R. J. Mathar, Jun 07 2025

Extensions

More terms from James Sellers, May 01 2000

A248696 Decimal expansion of sum_{n >= 1} (2n)!/(1!*2!*...*n!).

Original entry on oeis.org

3, 3, 8, 9, 4, 9, 2, 8, 0, 1, 0, 9, 8, 9, 4, 2, 4, 2, 9, 7, 4, 5, 0, 7, 2, 3, 5, 0, 4, 8, 8, 6, 9, 7, 6, 8, 1, 1, 2, 5, 5, 2, 3, 0, 4, 2, 5, 0, 6, 4, 7, 4, 4, 9, 1, 6, 1, 2, 4, 9, 3, 0, 2, 1, 2, 6, 1, 4, 5, 1, 3, 6, 7, 4, 4, 4, 0, 0, 5, 4, 9, 7, 7, 4, 2, 9, 2, 3, 6, 5, 3, 3, 6, 3, 3, 7, 0, 9, 6, 5, 6, 5, 7
Offset: 3

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

Let t(n) = (2n)!/(1!*2!*...*n!). Then t(n) is an integer for n = 1..5, and max{t(n), n >= 1} = t(4) = 140... . It appears that t(n) < 10^(-6) for n > 9.

Examples

			338.9492801098942429745072350488697681125523042506474491612493021261451367444...
		

Crossrefs

Programs

  • Maple
    evalf(sum((2*n)!/product(k!, k=1..n), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[(2 n)!/Product[k!, {k, 1, n}], {n, 1, 300}], 120]
    RealDigits[u]  (* A248696 *)
    NSum[(2 n)!/BarnesG[n+2], {n, 1, Infinity}, WorkingPrecision -> 103] // RealDigits // First (* Jean-François Alcover, Nov 19 2015 *)
  • PARI
    suminf(n=1, (2*n)!/prod(k=1, n, k!)) \\ Michel Marcus, Oct 19 2014

Extensions

More digits from Jean-François Alcover, Nov 19 2015

A248759 Decimal expansion of sum_{n>=1} n!/(3n)!.

Original entry on oeis.org

1, 6, 9, 4, 6, 1, 0, 2, 9, 0, 3, 2, 0, 7, 4, 1, 2, 8, 6, 4, 6, 9, 2, 6, 7, 0, 5, 2, 9, 8, 9, 9, 6, 3, 3, 3, 1, 6, 9, 7, 1, 2, 4, 2, 9, 9, 3, 7, 7, 4, 0, 8, 0, 0, 4, 2, 0, 5, 5, 4, 0, 2, 5, 1, 0, 0, 6, 3, 6, 1, 1, 8, 6, 6, 1, 1, 6, 0, 3, 2, 1, 4, 0, 2, 9, 9
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			0.1694610290320741286469267052989963331697124299377408004205540251006361...
		

Crossrefs

Programs

  • Maple
    evalf(sum(n!/(3*n)!, n=1..infinity),120) # Vaclav Kotesovec, Oct 15 2014
  • Mathematica
    u = N[Sum[n!/(3 n)!, {n, 1, 200}], 120]
    RealDigits[u]  (* A248759 *)
    N[HypergeometricPFQ[{1}, {4/3, 5/3}, 1/27]/6,120] (* Vaclav Kotesovec, Oct 15 2014 *)
  • PARI
    suminf(n=1, n!/(3*n)!) \\ Michel Marcus, Oct 15 2014

A248760 Decimal expansion of sum_{n >= 1} (2n)!/(3n)!.

Original entry on oeis.org

3, 6, 8, 7, 3, 7, 8, 2, 0, 2, 9, 4, 6, 4, 9, 9, 0, 4, 0, 8, 9, 7, 7, 7, 2, 9, 6, 1, 6, 5, 7, 4, 0, 3, 4, 2, 0, 9, 8, 3, 7, 1, 9, 7, 8, 8, 1, 4, 6, 9, 8, 4, 9, 1, 0, 6, 8, 7, 8, 2, 5, 7, 4, 5, 8, 9, 0, 5, 9, 0, 1, 7, 3, 5, 7, 9, 6, 1, 9, 0, 0, 6, 7, 1, 5, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			0.368737820294649904089777296165740342098371978814698491068782574589059...
		

Crossrefs

Programs

  • Maple
    evalf(sum((2n)!/(3n)!, n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[(2 n)!/(3 n)!, {n, 1, 300}], 120]
    RealDigits[u]  (* A248760 *)
    N[HypergeometricPFQ[{1, 3/2}, {4/3, 5/3}, 4/27]/3, 120] (* Vaclav Kotesovec, Nov 15 2020 *)
  • PARI
    suminf(n=1, (2*n)!/(3*n)!) \\ Michel Marcus, Oct 19 2014

A248761 Decimal expansion of sum_{n >= 1} 1/sqrt(n!).

Original entry on oeis.org

2, 4, 6, 9, 5, 0, 6, 3, 1, 4, 5, 2, 1, 0, 4, 7, 5, 6, 2, 4, 7, 5, 6, 3, 6, 7, 4, 4, 6, 6, 0, 1, 5, 0, 2, 5, 7, 6, 8, 9, 7, 5, 6, 1, 8, 3, 9, 9, 4, 9, 6, 9, 1, 9, 9, 6, 7, 7, 9, 2, 5, 7, 0, 1, 9, 7, 1, 8, 3, 5, 4, 8, 8, 0, 0, 3, 4, 0, 8, 8, 3, 4, 0, 3, 8, 6, 6, 2, 5, 0, 8, 4, 1, 2, 0, 0, 7, 1, 3, 5, 1, 7, 2, 6, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			2.46950631452104756247563674466015025768975618399496919967792570...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/sqrt(n!), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[1/Sqrt[n!], {n, 1, 200}], 100]
    RealDigits[u]  (* A248761 *)
  • PARI
    suminf(n=1, (1/sqrt(n!))) \\ Michel Marcus, Oct 18 2014

A248695 Decimal expansion of Sum_{n >= 1} n!/p(n), where p(n) = [n/2]!*[n/3]!*...*[n/n]!, and [ ] = floor.

Original entry on oeis.org

2, 9, 2, 4, 9, 9, 2, 7, 8, 7, 4, 3, 1, 2, 8, 5, 5, 1, 4, 5, 0, 0, 1, 5, 6, 0, 9, 4, 1, 7, 4, 4, 2, 4, 0, 1, 3, 2, 8, 9, 9, 8, 3, 9, 3, 1, 0, 2, 2, 9, 3, 1, 2, 1, 8, 0, 5, 0, 9, 4, 1, 3, 2, 9, 6, 8, 6, 9, 2, 5, 8, 8, 3, 7, 3, 3, 9, 2, 4, 9, 3, 5, 3, 5, 4, 7
Offset: 6

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

Let t(n) = n!/p(n). Then t(n) is an integer for n = 1..15, and max{t(n), n = 1..infinity} = t(23) = 77462.802... . It appears that t(n) < 1/10 for n > 35 and t(n) < 10^(-6) for n > 45.

Examples

			292499.27874312855145001560941744240132899839310229312180509413296869258837339...
		

Crossrefs

Programs

  • Maple
    evalf(sum(n!/product(floor(n/k)!, k=2..n), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[n!/Product[Floor[n/k]!, {k, 2, n}], {n, 1, 200}], 130]
    RealDigits[u]  (* A248695 *)

Extensions

Name corrected by Jason Yuen, Feb 27 2025
Showing 1-6 of 6 results.