A038761
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=9.
Original entry on oeis.org
1, 9, 53, 309, 1801, 10497, 61181, 356589, 2078353, 12113529, 70602821, 411503397, 2398417561, 13979001969, 81475594253, 474874563549, 2767771787041, 16131756158697, 94022765165141, 548004834832149, 3194006243827753, 18616032628134369, 108502189524978461
Offset: 0
A038762(3)^2 - 2*a(4)^2 = 2547^2 - 2*1801^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
Cf.
A001109,
A001541,
A001542,
A001652,
A001653,
A038762,
A046090,
A048654,
A055997,
A101386,
A124124,
A253811.
-
I:=[1, 9]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
-
a[0]:=1: a[1]:=9: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
-
LinearRecurrence[{6,-1},{1,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
-
a(n)=([0,1; -1,6]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
Edited: Replaced the unspecific Pell comment. Moved a formula from the comment section to the formula section. -
Wolfdieter Lang, Feb 05 2015
A038723
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=4.
Original entry on oeis.org
1, 4, 23, 134, 781, 4552, 26531, 154634, 901273, 5253004, 30616751, 178447502, 1040068261, 6061962064, 35331704123, 205928262674, 1200237871921, 6995498968852, 40772755941191, 237641036678294, 1385073464128573, 8072799748093144, 47051725024430291, 274237550398488602
Offset: 0
n = 2: A054490(2)^2 - 2*(2*a(2))^2 =
65^2 - 2*(2*23)^2 = -7,
(4*a(2))^2 - 2*A054490(2)^2 =
(4*23)^2 - 2*65^2 = 14. - _Wolfdieter Lang_, Feb 26 2015
a(2) = (A253811(1) + A101386(1))/2 = (19 + 27)/2 = 23. - _Wolfdieter Lang_, Mar 19 2015
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
- Stefano Spezia, Table of n, a(n) for n = 0..1300
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- Seyed Hassan Alavi, Ashraf Daneshkhah, and Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See Lemma 7.9 p. 21.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 55, 56.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
a[0]:=1: a[1]:=4: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
-
LinearRecurrence[{6,-1},{1,4},30] (* Harvey P. Dale, Aug 06 2020 *)
-
{a(n) = real((3 + 2*quadgen(8))^n * (1 + quadgen(8) / 4))} /* Michael Somos, Sep 28 2008 */
-
{a(n) = polchebyshev(n, 1, 3) + polchebyshev(n-1, 2, 3)} /* Michael Somos, Sep 28 2008 */
A054490
Expansion of (1+5*x)/(1-6*x+x^2).
Original entry on oeis.org
1, 11, 65, 379, 2209, 12875, 75041, 437371, 2549185, 14857739, 86597249, 504725755, 2941757281, 17145817931, 99933150305, 582453083899, 3394785353089, 19786259034635, 115322768854721, 672150354093691, 3917579355707425, 22833325780150859
Offset: 0
n = 2: sqrt(8*23^2-7) = 65.
2*19 + 27 = 65. - _Wolfdieter Lang_, Mar 19 2015
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See y(n) in Lemma 7.9 p. 21.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
a:=[1,11];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 20 2020
-
I:=[1,11]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
-
a[0]:=1: a[1]:=11: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
-
CoefficientList[Series[(1+5x)/(1-6x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
LinearRecurrence[{6, -1}, {1, 11}, 30] (* G. C. Greubel, Jul 26 2018 *)
-
my(x='x+O('x^30)); Vec((1+5*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jul 26 2018
-
[lucas_number1(2*n+1,2,-1) + 3*lucas_number1(2*n,2,-1) for n in (0..30)] # G. C. Greubel, Jan 20 2020
A101386
Expansion of g.f.: (5 - 3*x)/(1 - 6*x + x^2).
Original entry on oeis.org
5, 27, 157, 915, 5333, 31083, 181165, 1055907, 6154277, 35869755, 209064253, 1218515763, 7102030325, 41393666187, 241259966797, 1406166134595, 8195736840773, 47768254910043, 278413792619485, 1622714500806867, 9457873212221717, 55124524772523435, 321289275422918893
Offset: 0
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 55, 56.
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- Tanya Khovanova, Recursive Sequences
- Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022.
- Eric Weisstein's World of Mathematics, NSW Number.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!((5 - 3*x)/(1-6*x+x^2))); // G. C. Greubel, Jul 26 2018
-
A101386:= (n) -> simplify(5*ChebyshevU(n, 3) - 3*ChebyshevU(n-1, 3)); seq( A101386(n), n = 0..30); # G. C. Greubel, Mar 17 2020
-
CoefficientList[ Series[(5-3x)/(1-6x+x^2), {x,0,30}], x] (* Robert G. Wilson v, Jan 29 2005 *)
LinearRecurrence[{6,-1},{5,27},30] (* Harvey P. Dale, Apr 23 2016 *)
-
Vec((5-3*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Feb 05 2015
-
[5*chebyshev_U(n,3) -3*chebyshev_U(n-1,3) for n in (0..30)] # G. C. Greubel, Mar 17 2020
A038762
a(n) = 6*a(n-1) - a(n-2) for n >= 2, with a(0)=3, a(1)=13.
Original entry on oeis.org
3, 13, 75, 437, 2547, 14845, 86523, 504293, 2939235, 17131117, 99847467, 581953685, 3391874643, 19769294173, 115223890395, 671574048197, 3914220398787, 22813748344525, 132968269668363, 774995869665653, 4517006948325555, 26327045820287677, 153445267973400507
Offset: 0
a(3)^2 - 2*A038761(3)^2 = 437^2 - 2*309^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 55, 56.
- M. J. DeLeon, Pell's Equation and Pell Number Triples, Fib. Quart., 14(1976), pp. 456-460.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
I:=[3, 13]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
-
LinearRecurrence[{6,-1},{3,13},40] (* Vincenzo Librandi, Nov 16 2011 *)
-
x='x+O('x^30); Vec((3-5*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jul 26 2018
A077442
2*a(n)^2 + 7 is a square.
Original entry on oeis.org
1, 3, 9, 19, 53, 111, 309, 647, 1801, 3771, 10497, 21979, 61181, 128103, 356589, 746639, 2078353, 4351731, 12113529, 25363747, 70602821, 147830751, 411503397, 861620759, 2398417561, 5021893803, 13979001969, 29269742059, 81475594253
Offset: 0
a(4)^2 - 2*a(3)^2 = 27^2 - 2*19^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
-
CoefficientList[Series[(1+3 x+3 x^2+x^3)/ (1-6 x^2+x^4),{x,0,50}],x] (* Harvey P. Dale, Mar 12 2011 *)
LinearRecurrence[{0, 6, 0, -1},{1,3,9,19},50] (* Sture Sjöstedt, Oct 08 2012 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;3;9;19])[1,1] \\ Charles R Greathouse IV, Jun 20 2015
-
Vec((x+1)^3/(x^2+2*x-1)/(x^2-2*x-1) + O(x^50)) \\ Colin Barker, Mar 27 2016
Edited: n in Name replaced by a(n). Pell comments moved to comment section. -
Wolfdieter Lang, Feb 05 2015
A077443
Numbers k such that (k^2 - 7)/2 is a square.
Original entry on oeis.org
3, 5, 13, 27, 75, 157, 437, 915, 2547, 5333, 14845, 31083, 86523, 181165, 504293, 1055907, 2939235, 6154277, 17131117, 35869755, 99847467, 209064253, 581953685, 1218515763, 3391874643, 7102030325, 19769294173, 41393666187, 115223890395, 241259966797, 671574048197
Offset: 1
a(3)^2 - 2*A077442(2)^2 = 13^2 - 2*9^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- J. J. O'Connor and E. F. Robertson, History of Pell's Equation
- J. P. Robertson, Solving the Generalized Pell Equation
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Cf.
A000129,
A001333,
A006452,
A038761,
A038762,
A077442,
A101386,
A124124,
A156649,
A176981,
A216134,
A253811.
-
LinearRecurrence[{0,6,0,-1},{3,5,13,27},50] (* Sture Sjöstedt, Oct 09 2012 *)
Edited: replaced n by a(n) in the name. Moved Pell remarks to the comment section. Added cross references. -
Wolfdieter Lang, Feb 05 2015
A120861
Fixed-k dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 7, 3, 12, 41, 4, 19, 70, 239, 5, 24, 111, 408, 1393, 6, 31, 140, 647, 2378, 8119, 8, 36, 181, 816, 3771, 13860, 47321, 9, 48, 210, 1055, 4756, 21979, 80782, 275807, 10, 53, 280, 1224, 6149, 27720, 128103, 470832, 1607521, 11, 60, 309, 1632, 7134
Offset: 1
Northwest corner:
1, 7, 41, 239, 1393, 8119, 47321, ...
2, 12, 70, 408, 2378, 13860, 80782, ...
3, 19, 111, 647, 3771, 21979, 128103, ...
4, 24, 140, 816, 4756, 27720, 161564, ...
5, 31, 181, 1055, 6149, 35839, 208885, ...
6, 36, 210, 1224, 7134, 41580, 242346, ...
... [Edited by _Petros Hadjicostas_, Jul 07 2020]
Cf.
A087056,
A087059,
A120858,
A120859,
A120860,
A120862,
A120863,
A336109 (first column),
A002315 (first row),
A001542 (2nd row),
A253811 (3rd row).
-
f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););};
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020
A266504
a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.
Original entry on oeis.org
2, 2, 1, 3, 4, 8, 9, 19, 22, 46, 53, 111, 128, 268, 309, 647, 746, 1562, 1801, 3771, 4348, 9104, 10497, 21979, 25342, 53062, 61181, 128103, 147704, 309268, 356589, 746639, 860882, 1802546, 2078353, 4351731, 5017588, 10506008, 12113529, 25363747, 29244646, 61233502
Offset: 0
Cf.
A000129,
A001333,
A002203,
A002965,
A006451,
A006452,
A002965,
A038761,
A038762,
A048654,
A048655,
A054490,
A078343,
A098586,
A098790,
A100525,
A101386,
A135532,
A216134,
A216162,
A253811,
A255236,
A266504,
A266505,
A266507.
-
I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
-
LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* Michael De Vlieger, Dec 31 2015 *)
-
Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Colin Barker, Dec 31 2015
A266505
a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.
Original entry on oeis.org
-1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467
Offset: 0
Cf.
A000129,
A001333,
A002203,
A002965,
A006451,
A006452,
A002965,
A038761,
A038762,
A048654,
A048655,
A054490,
A078343,
A098586,
A098790,
A100525,
A101386,
A135532,
A216134,
A216162,
A253811,
A255236,
A266504,
A266505,
A266507.
-
I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
-
a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end: seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
-
LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *)
-
my(x='x+O('x^40)); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018
Showing 1-10 of 10 results.
Comments