cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A040000 a(0)=1; a(n)=2 for n >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Sequence of electron arrangement in the 1s 2s and 3s atomic subshells. Cf. A001105, A016825. - Jeremy Gardiner, Dec 19 2004
Binomial transform of A165326. - Philippe Deléham, Sep 16 2009
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
Eventual period is (2). - Zak Seidov, Mar 05 2011
Also decimal expansion of 11/90. - Vincenzo Librandi, Sep 24 2011
a(n) = 3 - A054977(n); right edge of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020

Examples

			sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
11/90 = 0.1222222222222222222... - _Natan Arie Consigli_, Sep 11 2016
		

References

  • A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 276-278.

Crossrefs

Convolution square is A008574.
See A003945 etc. for (1+x)/(1-k*x).
From Jaume Oliver Lafont, Mar 26 2009: (Start)
Sum_{0<=k<=n} a(k) = A005408(n).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. A001333/A000129 (continued fraction convergents).
Cf. A000122, A002193 (sqrt(2) decimal expansion), A006487 (Egyptian fraction).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).

Programs

  • Haskell
    a040000 0 = 1; a040000 n = 2
    a040000_list = 1 : repeat 2  -- Reinhard Zumkeller, May 07 2012
  • Maple
    Digits := 100: convert(evalf(sqrt(2)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    a[ n_] := 2 - Boole[n == 0]; (* Michael Somos, Dec 28 2014 *)
    PadRight[{1},120,2] (* or *) RealDigits[11/90, 10, 120][[1]] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    {a(n) = 2-!n}; /* Michael Somos, Apr 16 2007 */
    
  • PARI
    a(n)=1+sign(n)  \\ Jaume Oliver Lafont, Mar 26 2009
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1]));  \\ Harry J. Smith, Apr 21 2009
    

Formula

G.f.: (1+x)/(1-x). - Paul Barry, Feb 28 2003
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A068875(n-k). - Paul Barry, Nov 14 2004
From Michael Somos, Apr 16 2007: (Start)
Euler transform of length 2 sequence [2, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w).
E.g.f.: 2*exp(x) - 1.
a(n) = a(-n) for all n in Z (one possible extension to n<0). (End)
G.f.: (1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 26 2009
G.f.: exp(2*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = Sum_{k=0..n} A108561(n,k)*(-1)^k. - Philippe Deléham, Nov 17 2013
a(n) = 1 + sign(n). - Wesley Ivan Hurt, Apr 16 2014
10 * 11/90 = 11/9 = (11/2 R)/(9/2 R) = Cp(4)/Cv(4) = A272005/A272004, with R = A081822 (or A070064). - Natan Arie Consigli, Sep 11 2016
a(n) = A001227(A000040(n+1)). - Omar E. Pol, Feb 28 2018

A020793 Decimal expansion of 1/6.

Original entry on oeis.org

1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Comments

Except for the first term identical to A010722, A040006 and A021019. Except for the first terms the same as A021028, A021100, A021388, A071279, A101272, A168608, A177057,... - M. F. Hasler, Oct 24 2011
Decimal expansion of gamma(1) = 5/3 (with offset 1), where gamma(n) = Cp(n)/Cv(n) = is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Jul 10 2016

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Springer, 2013, see p. 224.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/6,10,120][[1]] (* or *) PadRight[{1},120,{6}] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    a(n)=6-5*!n  \\ M. F. Hasler, Oct 24 2011

Formula

a(n) = 6^n mod 10. - Zerinvary Lajos, Nov 26 2009
Equals Sum_{k>=1} 1/7^k. - Bruno Berselli, Jan 03 2014
10 * 1/6 = 5/3 = (5/2 R)/(3/2 R) = Cp(1)/Cv(1) = A272002/A272001, with R = A081822 (or A070064). - Natan Arie Consigli, Jul 10 2016
G.f.: (1 + 5*x)/(1 - x). - Ilya Gutkovskiy, Jul 10 2016
Equals Sum_{k>=1} 1/(k*Pi)^2. - Maciej Kaniewski, Sep 14 2017
Equals Sum_{k>=1} (zeta(2*k)-1)/4^k. - Amiram Eldar, Jun 08 2021
K_{n>=2} 2*n/(2*n - 3) = 5/3. (see Clawson at p. 224). - Stefano Spezia, Jul 01 2024
E.g.f.: 6*exp(x) - 5. - Elmo R. Oliveira, Aug 05 2024

A272001 Decimal expansion of Cv(1), the molar specific heat of an atomic ideal gas at constant volume.

Original entry on oeis.org

1, 2, 4, 7, 1, 6, 9, 3, 9, 2, 7, 2, 2, 9, 8, 6
Offset: 2

Views

Author

Natan Arie Consigli, Jul 02 2016

Keywords

Crossrefs

Formula

Equals 3/2 * A070064 = 12.47169392722986 J mol^-1 K^-1.

Extensions

Edited by Andrey Zabolotskiy, Apr 02 2025

A272003 Decimal expansion of the molar specific heat of an ideal gas consisting of molecules with 5 degrees of freedom at constant pressure, in J mol^-1 K^-1.

Original entry on oeis.org

2, 9, 1, 0, 0, 6, 1, 9, 1, 6, 3, 5, 3, 6, 3, 4
Offset: 2

Views

Author

Natan Arie Consigli, Jul 06 2016

Keywords

Comments

Also the decimal expansion of the molar specific heat of an ideal gas consisting of molecules with 7 degrees of freedom at constant volume.

Examples

			29.10061916353634 J mol^-1 K^-1.
		

Crossrefs

Formula

Equals 7/2 * R = 7/2 * A070064.
Equals A272002 + A070064.

Extensions

Edited by Andrey Zabolotskiy, Apr 02 2025

A272005 Decimal expansion of the molar specific heat of an ideal gas consisting of molecules with 9 degrees of freedom at constant pressure, in J mol^-1 K^-1.

Original entry on oeis.org

4, 5, 7, 2, 9, 5, 4, 4, 3, 9, 9, 8, 4, 2, 8, 2
Offset: 2

Views

Author

Natan Arie Consigli, Jul 09 2016

Keywords

Comments

Also the decimal expansion of the molar specific heat of an ideal gas consisting of molecules with 11 degrees of freedom at constant volume.

Examples

			45.72954439984282 J mol^-1 K^-1.
		

Crossrefs

Formula

Equals 11/2 * R = 11/2 * A070064.
Equals A272004 + A070064.

Extensions

Edited by Andrey Zabolotskiy, Apr 02 2025

A272004 Decimal expansion of the molar specific heat of an ideal gas consisting of molecules with 7 degrees of freedom at constant pressure, in J mol^-1 K^-1.

Original entry on oeis.org

3, 7, 4, 1, 5, 0, 8, 1, 7, 8, 1, 6, 8, 9, 5, 8
Offset: 2

Views

Author

Natan Arie Consigli, Jul 09 2016

Keywords

Comments

Also the decimal expansion of the molar specific heat of an ideal gas consisting of molecules with 9 degrees of freedom at constant volume.

Examples

			37.41508178168958 J mol^-1 K^-1.
		

Crossrefs

Formula

Equals 9/2 * R = 9/2 * A070064.
Equals A272003 + A070064.

Extensions

Edited by Andrey Zabolotskiy, Apr 02 2025

A274981 Decimal expansion of gamma(2) = 7/5.

Original entry on oeis.org

1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Natan Arie Consigli, Aug 31 2016

Keywords

Comments

gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002.

Crossrefs

Cf. A020793 = gamma(1).

Formula

7/5 = (7/2 R)/(5/2 R) = Cp(2)/Cv(2) = A272003/A272002, with R = A081822 (or A070064).
Showing 1-7 of 7 results.