A035033
Numbers k such that k <= d(k)^2, where d() = number of divisors (A000005).
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 72, 80, 84, 90, 96, 108, 120, 126, 132, 140, 144, 168, 180, 192, 210, 216, 240, 252, 288, 300, 336, 360, 420, 480, 504, 540, 720, 840, 1260
Offset: 1
A036763
Numbers k such that k*d(x) = x has no solution for x, where d (A000005) is the number of divisors; sequence gives impossible x/d(x) quotients in order of magnitude.
Original entry on oeis.org
18, 27, 30, 45, 63, 64, 72, 99, 105, 112, 117, 144, 153, 160, 162, 165, 171, 195, 207, 225, 243, 252, 255, 261, 279, 285, 288, 294, 320, 333, 336, 345, 352, 360, 369, 387, 396, 405, 416, 423, 435, 441, 465, 468, 477, 490, 504, 531, 544, 549, 555, 567, 576
Offset: 1
No natural number x exists for which x = 18*d(x), so 18 is a term.
- P. Erdős and J. Suranyi, Selected Topics in Number Theory, Tankonyvkiado, Budapest, 1960 (in Hungarian).
- P. Erdős and J. Suranyi, Selected Topics in Number Theory, Springer, New York, 2003 (in English).
-
a036763 n = a036763_list !! (n-1)
a036763_list = filter ((== 0) . a051521) [1..]
-- Reinhard Zumkeller, Dec 28 2011
-
with(numtheory): A036763 := proc(n) local k,p: for k from 1 to 4*n^2 do p:=n*k: if(p=n*tau(p))then return NULL: fi: od: return n: end: seq(A036763(n),n=1..100); # Nathaniel Johnston, May 04 2011
-
noSolQ[n_] := !AnyTrue[Range[4*n^2], # == DivisorSigma[0, n*#]& ];
Reap[Do[If[noSolQ[n], Print[n]; Sow[n]], {n, 600}]][[2, 1]] (* Jean-François Alcover, Jan 30 2018 *)
A062249
a(n) = n + d(n), where d(n) = number of divisors of n, cf. A000005.
Original entry on oeis.org
2, 4, 5, 7, 7, 10, 9, 12, 12, 14, 13, 18, 15, 18, 19, 21, 19, 24, 21, 26, 25, 26, 25, 32, 28, 30, 31, 34, 31, 38, 33, 38, 37, 38, 39, 45, 39, 42, 43, 48, 43, 50, 45, 50, 51, 50, 49, 58, 52, 56, 55, 58, 55, 62, 59, 64, 61, 62, 61, 72, 63, 66, 69, 71, 69, 74, 69, 74, 73, 78, 73
Offset: 1
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001
A034695
Tau_6 (the 6th Piltz divisor function), the number of ordered 6-factorizations of n; Dirichlet convolution of number-of-divisors function (A000005) with A007426.
Original entry on oeis.org
1, 6, 6, 21, 6, 36, 6, 56, 21, 36, 6, 126, 6, 36, 36, 126, 6, 126, 6, 126, 36, 36, 6, 336, 21, 36, 56, 126, 6, 216, 6, 252, 36, 36, 36, 441, 6, 36, 36, 336, 6, 216, 6, 126, 126, 36, 6, 756, 21, 126, 36, 126, 6, 336, 36, 336, 36, 36, 6, 756, 6, 36, 126, 462, 36, 216, 6, 126
Offset: 1
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 29 and 38
- Leveque, William J., Fundamentals of Number Theory. New York:Dover Publications, 1996, ISBN 9780486689067, p .167-Exercise 5.b.
-
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 6], {n, 68}] (* Robert G. Wilson v, Nov 02 2005 *)
tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
-
a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] = binomial(f[i,2] + 5, f[i,2]); f[i,2]=1); factorback(f); \\ Michel Marcus, Jun 09 2014
-
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^6)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
-
from math import prod, comb
from sympy import factorint
def A034695(n): return prod(comb(5+e,5) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024
A221530
Triangle read by rows: T(n,k) = A000005(k)*A000041(n-k).
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 3, 4, 2, 3, 5, 6, 4, 3, 2, 7, 10, 6, 6, 2, 4, 11, 14, 10, 9, 4, 4, 2, 15, 22, 14, 15, 6, 8, 2, 4, 22, 30, 22, 21, 10, 12, 4, 4, 3, 30, 44, 30, 33, 14, 20, 6, 8, 3, 4, 42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2, 56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6
Offset: 1
For n = 6:
-------------------------
k A000005 T(6,k)
1 1 * 7 = 7
2 2 * 5 = 10
3 2 * 3 = 6
4 3 * 2 = 6
5 2 * 1 = 2
6 4 * 1 = 4
. A000041
-------------------------
So row 6 is [7, 10, 6, 6, 4, 2]. Note that the sum of row 6 is 7+10+6+6+2+4 = 35 equals A006128(6).
.
Triangle begins:
1;
1, 2;
2, 2, 2;
3, 4, 2, 3;
5, 6, 4, 3, 2;
7, 10, 6, 6, 2, 4;
11, 14, 10, 9, 4, 4, 2;
15, 22, 14, 15, 6, 8, 2, 4;
22, 30, 22, 21, 10, 12, 4, 4, 3;
30, 44, 30, 33, 14, 20, 6, 8, 3, 4;
42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2;
56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6;
...
-
A221530row[n_]:=DivisorSigma[0,Range[n]]PartitionsP[n-Range[n]];Array[A221530row,10] (* Paolo Xausa, Sep 04 2023 *)
-
row(n) = vector(n, i, numdiv(i)*numbpart(n-i)); \\ Michel Marcus, Jul 18 2014
A061502
a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.
Original entry on oeis.org
1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1
- R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.
- N. J. A. Sloane, Table of n, a(n) for n = 1..1024
- Adrian Dudek, On the Success of Mishandling Euclid's Lemma, arXiv:1602.03555 [math.HO], 2016. See B(n) p. 2.
- Chaohua Jia and Ayyadurai Sankaranarayanan, The mean square of the divisor function, Acta Arithmetica 164 (2014), 181-208.
- Michaela Cully-Hugill and Timothy Trudgian, Two explicit divisor sums, arXiv:1911.07369 [math.NT], Nov 19 2019
- Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
- Florian Luca and László Tóth, The r-th moment of the divisor function: an elementary approach, Journal of Integer Sequences 20 (2017), Article 17.7.4, 8 pp.
- Adolf Piltz, Über das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, 1881.
- Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (3).
- D. Suryanarayana and R. Rama Chandra Rao, On an Asymptotic Formula of Ramanujan, Mathematica Scandinavica, 32, 258-264, 1973.
- B. M. Wilson, Proofs of some formulas enunciated by Ramanujan, Proc. London Math. Soc. (2) 21 (1922) 235-255.
-
[&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
-
Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
-
for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
-
vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
-
first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
A372713
Number of divisors of 3n; a(n) = tau(3*n) = A000005(3*n).
Original entry on oeis.org
2, 4, 3, 6, 4, 6, 4, 8, 4, 8, 4, 9, 4, 8, 6, 10, 4, 8, 4, 12, 6, 8, 4, 12, 6, 8, 5, 12, 4, 12, 4, 12, 6, 8, 8, 12, 4, 8, 6, 16, 4, 12, 4, 12, 8, 8, 4, 15, 6, 12, 6, 12, 4, 10, 8, 16, 6, 8, 4, 18, 4, 8, 8, 14, 8, 12, 4, 12, 6, 16, 4, 16, 4, 8, 9, 12, 8, 12, 4, 20
Offset: 1
-
Table[DivisorSigma[0, 3*n], {n, 1, 150}]
-
a(n) = numdiv(3*n); \\ Michel Marcus, May 20 2024
A221531
Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.
Original entry on oeis.org
1, 2, 1, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 6, 5, 4, 2, 6, 6, 10, 7, 2, 4, 4, 9, 10, 14, 11, 4, 2, 8, 6, 15, 14, 22, 15, 3, 4, 4, 12, 10, 21, 22, 30, 22, 4, 3, 8, 6, 20, 14, 33, 30, 44, 30, 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42, 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56
Offset: 1
For n = 6:
-------------------------
k A000041 T(6,k)
1 1 * 4 = 4
2 1 * 2 = 2
3 2 * 3 = 6
4 3 * 2 = 6
5 5 * 2 = 10
6 7 * 1 = 7
. A000005
-------------------------
So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
.
Triangle begins:
1;
2, 1;
2, 2, 2;
3, 2, 4, 3;
2, 3, 4, 6, 5;
4, 2, 6, 6, 10, 7;
2, 4, 4, 9, 10, 14, 11;
4, 2, 8, 6, 15, 14, 22, 15;
3, 4, 4, 12, 10, 21, 22, 30, 22;
4, 3, 8, 6, 20, 14, 33, 30, 44, 30;
2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42;
6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56;
...
A015996
(tau(n^4) + 3)/4, where tau = A000005.
Original entry on oeis.org
1, 2, 2, 3, 2, 7, 2, 4, 3, 7, 2, 12, 2, 7, 7, 5, 2, 12, 2, 12, 7, 7, 2, 17, 3, 7, 4, 12, 2, 32, 2, 6, 7, 7, 7, 21, 2, 7, 7, 17, 2, 32, 2, 12, 12, 7, 2, 22, 3, 12, 7, 12, 2, 17, 7, 17, 7, 7, 2, 57, 2, 7, 12, 7, 7, 32, 2, 12, 7, 32, 2, 30, 2, 7, 12, 12, 7, 32, 2, 22, 5, 7, 2, 57, 7, 7
Offset: 1
Cf.
A000005,
A018892,
A015995,
A015999,
A016001,
A016002,
A016003,
A016005,
A016006,
A016007,
A016008,
A016009,
A016012,
A016020.
-
A015996 := proc(n)
(numtheory[tau](n^4)+3)/4 ;
end proc; # R. J. Mathar, May 09 2013
-
Table[(DivisorSigma[0, n^4] + 3)/4, {n, 100}] (* Wesley Ivan Hurt, Nov 16 2013 *)
-
A015996(n) = (numdiv(n^4)+3)/4;
for(n=1, 10000, write("b015996.txt", n, " ", A015996(n)));
\\ Antti Karttunen, Jan 17 2017
Definition corrected by Vladeta Jovovic, Sep 03 2005
A063446
Integers m such that d(m+1) = 2*d(m), where d(m) = A000005(m).
Original entry on oeis.org
1, 5, 7, 13, 37, 39, 49, 55, 61, 65, 69, 73, 77, 87, 129, 134, 157, 183, 185, 193, 194, 221, 237, 247, 249, 254, 265, 275, 277, 295, 309, 313, 321, 327, 343, 363, 365, 397, 398, 417, 421, 437, 454, 455, 457, 458, 469, 471, 473, 475, 482, 493, 497, 505, 517
Offset: 1
For m = 77, 2*d(77) = 2*4 = 8 = d(78).
-
Filtered([1..520],n->Tau(n+1)=2*Tau(n)); # Muniru A Asiru, Aug 20 2018
-
[n: n in [1..600] | NumberOfDivisors(n+1) eq (2* NumberOfDivisors(n))]; // Vincenzo Librandi, Aug 04 2018
-
Select[Range@ 520, DivisorSigma[0, # + 1] == 2 DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 19 2017 *)
-
{ n=0; for (m=1, 10^9, if (numdiv(m + 1) == 2*numdiv(m), write("b063446.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 21 2009
Comments