cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 5121 results. Next

A035033 Numbers k such that k <= d(k)^2, where d() = number of divisors (A000005).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 72, 80, 84, 90, 96, 108, 120, 126, 132, 140, 144, 168, 180, 192, 210, 216, 240, 252, 288, 300, 336, 360, 420, 480, 504, 540, 720, 840, 1260
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A036763 Numbers k such that k*d(x) = x has no solution for x, where d (A000005) is the number of divisors; sequence gives impossible x/d(x) quotients in order of magnitude.

Original entry on oeis.org

18, 27, 30, 45, 63, 64, 72, 99, 105, 112, 117, 144, 153, 160, 162, 165, 171, 195, 207, 225, 243, 252, 255, 261, 279, 285, 288, 294, 320, 333, 336, 345, 352, 360, 369, 387, 396, 405, 416, 423, 435, 441, 465, 468, 477, 490, 504, 531, 544, 549, 555, 567, 576
Offset: 1

Views

Author

Keywords

Comments

A special case of a bound on d(n) by Erdős and Suranyi (1960) was used to get a limit: a = x/d(x) > 0.5*sqrt(x) and below 4194304 a computer test shows these values did not occur as x = a*d(x). For larger x this is impossible since if d(x) < sqrt(x), then x/d(x) > sqrt(4194304) = 2048 > the given terms.
A051521(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
This sequence contains all numbers of the form k = 9p, p prime (i.e., k = 18, 27, 45, 63, 99, ...). - Jianing Song, Nov 25 2018

Examples

			No natural number x exists for which x = 18*d(x), so 18 is a term.
		

References

  • P. Erdős and J. Suranyi, Selected Topics in Number Theory, Tankonyvkiado, Budapest, 1960 (in Hungarian).
  • P. Erdős and J. Suranyi, Selected Topics in Number Theory, Springer, New York, 2003 (in English).

Crossrefs

Programs

  • Haskell
    a036763 n = a036763_list !! (n-1)
    a036763_list = filter ((== 0) . a051521) [1..]
    -- Reinhard Zumkeller, Dec 28 2011
  • Maple
    with(numtheory): A036763 := proc(n) local k,p: for k from 1 to 4*n^2 do p:=n*k: if(p=n*tau(p))then return NULL: fi: od: return n: end: seq(A036763(n),n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    noSolQ[n_] := !AnyTrue[Range[4*n^2], # == DivisorSigma[0, n*#]& ];
    Reap[Do[If[noSolQ[n], Print[n]; Sow[n]], {n, 600}]][[2, 1]] (* Jean-François Alcover, Jan 30 2018 *)

Extensions

Definition corrected by N. J. A. Sloane, May 18 2022 at the suggestion of David James Sycamore.

A062249 a(n) = n + d(n), where d(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

2, 4, 5, 7, 7, 10, 9, 12, 12, 14, 13, 18, 15, 18, 19, 21, 19, 24, 21, 26, 25, 26, 25, 32, 28, 30, 31, 34, 31, 38, 33, 38, 37, 38, 39, 45, 39, 42, 43, 48, 43, 50, 45, 50, 51, 50, 49, 58, 52, 56, 55, 58, 55, 62, 59, 64, 61, 62, 61, 72, 63, 66, 69, 71, 69, 74, 69, 74, 73, 78, 73
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001

Keywords

Comments

Number of cyclic subgroups of dihedral group with 2n elements.
a(n) is the n-th smallest number not a divisor of n. - J. Lowell, Apr 06 2008

Crossrefs

Cf. A064491 (iteration, start=1).

Programs

  • Haskell
    a062249 n = a000005 n + n  -- Reinhard Zumkeller, Mar 29 2014
    
  • Maple
    with(numtheory):seq(n+tau(n), n=1..71) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[n + DivisorSigma[0, n], {n, 100}] (* Indranil Ghosh, Apr 12 2017 *)
  • PARI
    a(n) = n + numdiv(n) \\ Harry J. Smith, Aug 03 2009
    
  • Python
    from sympy.ntheory import divisor_count
    [n + divisor_count(n) for n in range(101)] # Indranil Ghosh, Apr 12 2017

Formula

a(n) = n + A000005(n). - Omar E. Pol, Dec 12 2008
From Ilya Gutkovskiy, Apr 12 2017: (Start)
G.f.: x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 + zeta(s-1). (End)

Extensions

Formula and more terms from Vladeta Jovovic, Jul 03 2001

A034695 Tau_6 (the 6th Piltz divisor function), the number of ordered 6-factorizations of n; Dirichlet convolution of number-of-divisors function (A000005) with A007426.

Original entry on oeis.org

1, 6, 6, 21, 6, 36, 6, 56, 21, 36, 6, 126, 6, 36, 36, 126, 6, 126, 6, 126, 36, 36, 6, 336, 21, 36, 56, 126, 6, 216, 6, 252, 36, 36, 36, 441, 6, 36, 36, 336, 6, 216, 6, 126, 126, 36, 6, 756, 21, 126, 36, 126, 6, 336, 36, 336, 36, 36, 6, 756, 6, 36, 126, 462, 36, 216, 6, 126
Offset: 1

Views

Author

Keywords

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 29 and 38
  • Leveque, William J., Fundamentals of Number Theory. New York:Dover Publications, 1996, ISBN 9780486689067, p .167-Exercise 5.b.

Crossrefs

Cf. A000005 (tau_2), A007425 (tau_3), A007426 (tau_4), A061200 (tau_5).
Cf. A061204.
Column k=6 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 6], {n, 68}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] = binomial(f[i,2] + 5, f[i,2]); f[i,2]=1); factorback(f); \\ Michel Marcus, Jun 09 2014
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^6)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A034695(n): return prod(comb(5+e,5) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

Dirichlet g.f.: zeta^6(s).
Multiplicative with a(p^e) = binomial(e+5, e). - Mitch Harris, Jun 27 2005
The Piltz divisor functions hold for tau_j(*)tau_k = tau_{j+k}, where (*) means Dirichlet convolution.
G.f.: Sum_{k>=1} tau_5(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018

Extensions

More terms from Robert G. Wilson v, Nov 02 2005

A221530 Triangle read by rows: T(n,k) = A000005(k)*A000041(n-k).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 4, 2, 3, 5, 6, 4, 3, 2, 7, 10, 6, 6, 2, 4, 11, 14, 10, 9, 4, 4, 2, 15, 22, 14, 15, 6, 8, 2, 4, 22, 30, 22, 21, 10, 12, 4, 4, 3, 30, 44, 30, 33, 14, 20, 6, 8, 3, 4, 42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2, 56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Comments

T(n,k) is the number of partitions of n that contain k as a part multiplied by the number of divisors of k.
It appears that T(n,k) is also the total number of appearances of k in the last k sections of the set of partitions of n multiplied by the number of divisors of k.
T(n,k) is also the number of partitions of k into equal parts multiplied by the number of ones in the j-th section of the set of partitions of n, where j = (n - k + 1).
For another version see A245095. - Omar E. Pol, Jul 15 2014

Examples

			For n = 6:
  -------------------------
  k   A000005        T(6,k)
  1      1  *  7   =    7
  2      2  *  5   =   10
  3      2  *  3   =    6
  4      3  *  2   =    6
  5      2  *  1   =    2
  6      4  *  1   =    4
  .         A000041
  -------------------------
So row 6 is [7, 10, 6, 6, 4, 2]. Note that the sum of row 6 is 7+10+6+6+2+4 = 35 equals A006128(6).
.
Triangle begins:
  1;
  1,   2;
  2,   2,  2;
  3,   4,  2,  3;
  5,   6,  4,  3,  2;
  7,  10,  6,  6,  2,  4;
  11, 14, 10,  9,  4,  4,  2;
  15, 22, 14, 15,  6,  8,  2,  4;
  22, 30, 22, 21, 10, 12,  4,  4,  3;
  30, 44, 30, 33, 14, 20,  6,  8,  3,  4;
  42, 60, 44, 45, 22, 28, 10, 12,  6,  4,  2;
  56, 84, 60, 66, 30, 44, 14, 20,  9,  8,  2,  6;
  ...
		

Crossrefs

Similar to A221529.
Columns 1-2: A000041, A139582. Leading diagonals 1-3: A000005, A000005, A062011. Row sums give A006128.

Programs

  • Mathematica
    A221530row[n_]:=DivisorSigma[0,Range[n]]PartitionsP[n-Range[n]];Array[A221530row,10] (* Paolo Xausa, Sep 04 2023 *)
  • PARI
    row(n) = vector(n, i, numdiv(i)*numbpart(n-i)); \\ Michel Marcus, Jul 18 2014

Formula

T(n,k) = d(k)*p(n-k) = A000005(k)*A027293(n,k).

A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.

Original entry on oeis.org

1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
    Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
    

Formula

a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019

Extensions

Definition corrected by N. J. A. Sloane, May 25 2008

A372713 Number of divisors of 3n; a(n) = tau(3*n) = A000005(3*n).

Original entry on oeis.org

2, 4, 3, 6, 4, 6, 4, 8, 4, 8, 4, 9, 4, 8, 6, 10, 4, 8, 4, 12, 6, 8, 4, 12, 6, 8, 5, 12, 4, 12, 4, 12, 6, 8, 8, 12, 4, 8, 6, 16, 4, 12, 4, 12, 8, 8, 4, 15, 6, 12, 6, 12, 4, 10, 8, 16, 6, 8, 4, 18, 4, 8, 8, 14, 8, 12, 4, 12, 6, 16, 4, 16, 4, 8, 9, 12, 8, 12, 4, 20
Offset: 1

Views

Author

Vaclav Kotesovec, May 11 2024

Keywords

Comments

In general, for p prime, Sum_{j=1..n} tau(j*p) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.
If n is in A033428, then a(n) is odd and vice versa. - R. J. Mathar, Amiram Eldar, May 20 2024.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 3*n], {n, 1, 150}]
  • PARI
    a(n) = numdiv(3*n); \\ Michel Marcus, May 20 2024

Formula

Sum_{k=1..n} a(k) ~ n * (5*(log(n) + 2*gamma - 1) + log(3)) / 3, where gamma is the Euler-Mascheroni constant A001620.

A221531 Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 6, 5, 4, 2, 6, 6, 10, 7, 2, 4, 4, 9, 10, 14, 11, 4, 2, 8, 6, 15, 14, 22, 15, 3, 4, 4, 12, 10, 21, 22, 30, 22, 4, 3, 8, 6, 20, 14, 33, 30, 44, 30, 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42, 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Examples

			For n = 6:
-------------------------
k   A000041        T(6,k)
1      1  *  4   =    4
2      1  *  2   =    2
3      2  *  3   =    6
4      3  *  2   =    6
5      5  *  2   =   10
6      7  *  1   =    7
.         A000005
-------------------------
So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
.
Triangle begins:
1;
2,  1;
2,  2,  2;
3,  2,  4,  3;
2,  3,  4,  6, 5;
4,  2,  6,  6, 10, 7;
2,  4,  4,  9, 10, 14, 11;
4,  2,  8,  6, 15, 14, 22, 15;
3,  4,  4, 12, 10, 21, 22, 30, 22;
4,  3,  8,  6, 20, 14, 33, 30, 44, 30;
2,  4,  6, 12, 10, 28, 22, 45, 44, 60, 42;
6,  2,  8,  9, 20, 14, 44, 30, 66, 60, 84, 56;
...
		

Crossrefs

Mirror of A221530. Columns 1-3: A000005, A000005, A062011. Leading diagonals 1-2: A000041, A139582. Row sums give A006128.

Formula

T(n,k) = d(n-k+1)*p(k-1), n>=1, k>=1.

A015996 (tau(n^4) + 3)/4, where tau = A000005.

Original entry on oeis.org

1, 2, 2, 3, 2, 7, 2, 4, 3, 7, 2, 12, 2, 7, 7, 5, 2, 12, 2, 12, 7, 7, 2, 17, 3, 7, 4, 12, 2, 32, 2, 6, 7, 7, 7, 21, 2, 7, 7, 17, 2, 32, 2, 12, 12, 7, 2, 22, 3, 12, 7, 12, 2, 17, 7, 17, 7, 7, 2, 57, 2, 7, 12, 7, 7, 32, 2, 12, 7, 32, 2, 30, 2, 7, 12, 12, 7, 32, 2, 22, 5, 7, 2, 57, 7, 7
Offset: 1

Views

Author

Keywords

Comments

If n is prime, a(n) = 2 since a(p) = (tau(p^4)+3)/4 = (5+3)/4 = 2. - Wesley Ivan Hurt, Nov 16 2013

Crossrefs

Programs

Formula

a(n) = (A000005(n^4) + 3)/4.

Extensions

Definition corrected by Vladeta Jovovic, Sep 03 2005

A063446 Integers m such that d(m+1) = 2*d(m), where d(m) = A000005(m).

Original entry on oeis.org

1, 5, 7, 13, 37, 39, 49, 55, 61, 65, 69, 73, 77, 87, 129, 134, 157, 183, 185, 193, 194, 221, 237, 247, 249, 254, 265, 275, 277, 295, 309, 313, 321, 327, 343, 363, 365, 397, 398, 417, 421, 437, 454, 455, 457, 458, 469, 471, 473, 475, 482, 493, 497, 505, 517
Offset: 1

Views

Author

Labos Elemer, Jul 24 2001

Keywords

Examples

			For m = 77, 2*d(77) = 2*4 = 8 = d(78).
		

Crossrefs

Programs

  • GAP
    Filtered([1..520],n->Tau(n+1)=2*Tau(n)); # Muniru A Asiru, Aug 20 2018
  • Magma
    [n: n in [1..600] | NumberOfDivisors(n+1) eq (2* NumberOfDivisors(n))]; // Vincenzo Librandi, Aug 04 2018
    
  • Mathematica
    Select[Range@ 520, DivisorSigma[0, # + 1] == 2 DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 19 2017 *)
  • PARI
    { n=0; for (m=1, 10^9, if (numdiv(m + 1) == 2*numdiv(m), write("b063446.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 21 2009
    
Previous Showing 31-40 of 5121 results. Next