cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 4244 results. Next

A217139 Numbers n such that phi(n) = phi(n+12), with Euler's totient function phi = A000010.

Original entry on oeis.org

48, 68, 72, 78, 86, 88, 114, 143, 144, 156, 157, 164, 168, 186, 192, 203, 216, 222, 247, 273, 292, 356, 402, 432, 444, 450, 452, 456, 612, 654, 728, 732, 762, 798, 834, 864, 876, 884, 932, 942, 964, 1032, 1054, 1080, 1086, 1124, 1147, 1152, 1194, 1209, 1220
Offset: 1

Views

Author

Michel Marcus, Sep 27 2012

Keywords

Comments

Most of numbers n in this sequence are divisible by 2, and it appears that n/2 belongs to A179188. The other ones are listed in sequence A217141.
Proof of the comment: If n is even and not a multiple of 4 then phi(n)=phi(n/2). If n is a multiple of 4 then phi(n)=2 * phi(n/2). So when k is a multiple of 4 and phi(n)=phi(n+k), then phi(n/2)=phi(n/2+k/2). QED. This also applies to A179186, A179202. - Jud McCranie, Dec 30 2012

Crossrefs

Programs

  • Magma
    [n: n in [1..3000] | EulerPhi(n) eq EulerPhi(n+12)]; // Vincenzo Librandi, Sep 08 2016
  • Mathematica
    Select[Range[1, 5000], EulerPhi[#] == EulerPhi[# + 12] &] (* Vincenzo Librandi, Jun 24 2014 *)
  • PARI
    {op=vector(N=12); for( n=1, 1e4, if( op[n%N+1]+0==op[n%N+1]=eulerphi(n), print1(n-N, ", ")))}
    

A295503 a(n) = phi(10^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 60, 648, 6000, 64800, 466560, 6637344, 58752000, 648646704, 5890320000, 66663457344, 461894400000, 6458084523072, 60339430569600, 610154104320000, 5529599115264000, 66666634474902192, 441994921381739520, 6666666666666666660, 58301444908800000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), this sequence (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    Array[ EulerPhi[10^# - 1] &, 20] (* Robert G. Wilson v, Nov 22 2017 *)
  • PARI
    {a(n) = eulerphi(10^n-1)}

Formula

a(n) = n*A295497(n).
a(n) = A000010(A002283(n)). - Michel Marcus, Nov 25 2017

A299069 Expansion of Product_{k>=1} (1 + x^k)^phi(k), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 11, 19, 30, 44, 69, 103, 157, 229, 341, 491, 722, 1038, 1488, 2128, 3015, 4267, 5989, 8407, 11713, 16289, 22523, 31097, 42729, 58569, 80003, 108957, 147983, 200383, 270693, 364631, 490105, 656961, 878775, 1172653, 1561626, 2074982, 2751648, 3641536, 4810009, 6341365, 8344967
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(numtheory[phi](i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 09 2018
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 + x^k)^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d EulerPhi[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 46}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000010(k).
a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / (2*Pi^(2/3))) * Zeta(3)^(1/6) / (2^(1/3) * 3^(1/6) * Pi^(5/6) * n^(2/3)). - Vaclav Kotesovec, Mar 23 2018

A324650 a(n) = A000010(A276086(n)).

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 4, 4, 8, 8, 24, 24, 20, 20, 40, 40, 120, 120, 100, 100, 200, 200, 600, 600, 500, 500, 1000, 1000, 3000, 3000, 6, 6, 12, 12, 36, 36, 24, 24, 48, 48, 144, 144, 120, 120, 240, 240, 720, 720, 600, 600, 1200, 1200, 3600, 3600, 3000, 3000, 6000, 6000, 18000, 18000, 42, 42, 84, 84, 252, 252, 168, 168, 336, 336, 1008, 1008
Offset: 0

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Terms are duplicated because phi(2*(2n+1)) = phi(2n+1) for all n >= 0.

Crossrefs

Cf. A000010, A002110, A276086, A324651 (bisection).
Cf. also A267263, A276150, A324653, A324655 for omega, bigomega, sigma and tau analogs.
Cf. also A290077.

Programs

  • PARI
    A324650(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m *= (prime(i)-1)*(prime(i)^(((n%nextpr)/pr)-1)); n-=(n%nextpr));pr=nextpr); (m); };
    
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324650(n) = eulerphi(A276086(n));

Formula

a(n) = A000010(A276086(n)).
a(2n+1) = a(2n) for all n >= 0.
For n >= 1, a(A002110(n-1)) = A000040(n)-1.

A366579 a(n) = phi(3^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 4, 12, 40, 120, 288, 1092, 3072, 7776, 23600, 87120, 259200, 797160, 1847104, 5832000, 21523360, 63672480, 152845056, 580921200, 1700870400, 4368821184, 12550120000, 47071589412, 130459631616, 413939700000, 997562438080, 3012122557440, 11159367815680
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(3^n+1)}

Formula

a(n) = phi(3^n+1) = A000010(A034472(n)).

A366608 a(n) = phi(4^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 16, 48, 256, 800, 3840, 12544, 65536, 186624, 986880, 3345408, 16515072, 52306176, 252645120, 760320000, 4288266240, 13628740608, 64258375680, 218462552064, 1095233372160, 3105655160832, 16510446886912, 56000724240384, 280012271910912, 869940000000000
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    {a(n) = eulerphi(4^n+1)}
    
  • Python
    from sympy import totient
    def A366608(n): return totient((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = A053285(2*n). - Max Alekseyev, Jan 08 2024

A226561 a(n) = Sum_{d|n} d^n * phi(d), where phi(n) is the Euler totient function A000010(n).

Original entry on oeis.org

1, 5, 55, 529, 12501, 94835, 4941259, 67240193, 2324562301, 40039063525, 2853116706111, 35668789979107, 3634501279107037, 66676110291801575, 3503151245145885315, 147575078498173255681, 13235844190181388226833, 236079349222711695887225, 35611553801885644604231623
Offset: 1

Views

Author

Paul D. Hanna, Jun 10 2013

Keywords

Comments

Compare formula to the identity: Sum_{d|n} phi(d) = n.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 55*x^3/3 + 529*x^4/4 + 12501*x^5/5 + 94835*x^6/6 + ...
where
exp(L(x)) = 1 + x + 3*x^2 + 21*x^3 + 155*x^4 + 2691*x^5 + 18924*x^6 + 732230*x^7 + 9223166*x^8 + ... + A226560(n)*x^n + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (&+[EulerPhi(k)*(k*x)^k/(1-(k*x)^k): k in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
    
  • Maple
    f:= n -> add(d^n * numtheory:-phi(d), d = numtheory:-divisors(n)):
    map(f, [$1..40]); # Robert Israel, Jun 16 2017
  • Mathematica
    Table[DivisorSum[n, #*EulerPhi[#^n]  &], {n, 1, 30}]  (* or *) With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k]*(k*x)^k/(1 - (k*x)^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]]  (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    {a(n)=sumdiv(n, d, d^n*eulerphi(d))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=1, n, (n/gcd(k, n))^n); \\ Seiichi Manyama, Mar 11 2021
    
  • Python
    from sympy import totient, divisors
    def A226561(n):
        return sum(totient(d)*d**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

Logarithmic derivative of A226560.
a(n) = Sum_{d|n} d * phi(d^n).
a(n) = Sum_{d|n} phi(d^(n+1)).
a(n) = Sum_{d|n} phi(d^(n+2))/d.
a(n) = Sum_{d|n} d^(n-k+1) * phi(d^k) for k >= 1.
G.f.: Sum_{k>=1} phi(k)*(k*x)^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{k=1..n} (n/gcd(k,n))^n. - Seiichi Manyama, Mar 11 2021
a(n) = Sum_{k=1..n} gcd(n,k)^n*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 10 2021

A233542 Number of ways to write n = k^2 + m with k > 0 and m > 0 such that phi(k^2)*phi(m) - 1 is prime, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 2, 3, 3, 3, 2, 4, 2, 2, 2, 4, 3, 1, 2, 4, 4, 4, 3, 2, 4, 2, 3, 3, 2, 3, 4, 4, 5, 4, 4, 2, 1, 3, 4, 5, 4, 4, 3, 1, 6, 5, 5, 5, 2, 4, 4, 3, 2, 3, 4, 5, 4, 5, 4, 2, 3, 6, 4, 3, 5, 6, 3, 4, 6, 3, 4, 6, 6, 4, 4, 3, 8, 1, 3, 6, 5, 5, 4, 2, 2, 4, 5, 4, 5, 2, 5, 6, 3, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 12 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5.
(ii) Any integer n > 7 can be written as k^2 + m with k > 0 and m > 0 such that phi(k)^2*phi(m) - 1 is prime.
(iii) If n > 1 is not equal to 36, then n can be written as k^2 + m with k > 0 and m > 0 such that sigma(k)^2*phi(m) + 1 is prime, where sigma(k) is the sum of all (positive) divisors of k.
We have verified part (i) of the conjecture for n up to 2*10^7.

Examples

			a(6) = 1 since 6 = 1^2 + 5 with phi(1^2)*phi(5) - 1 = 1*4 - 1 = 3 prime.
a(7) = 1 since 7 = 2^2 + 3 with phi(2^2)*phi(3) - 1 = 2*2 - 1 = 3 prime.
a(23) = 1 since 23 = 4^2 + 7 with phi(4^2)*phi(7) - 1 = 8*6 - 1 = 47 prime.
a(42) = 1 since 42 = 6^2 + 6 with phi(6^2)*phi(6) - 1 = 12*2 - 1 = 23 prime.
a(49) = 1 since 49 = 2^2 + 45 with phi(2^2)*phi(45) - 1 = 2*24 - 1 = 47 prime.
a(83) = 1 since 83 = 9^2 + 2 with phi(9^2)*phi(2) - 1 = 54*1 - 1 = 53 prime.
a(188) = 1 since 188 = 6^2 + 152 with phi(6^2)*phi(152) - 1 = 12*72 - 1 = 863 prime.
a(327) = 1 since 327 = 5^2 + 302 with phi(5^2)*phi(302) - 1 = 20*150 - 1 = 2999 prime.
a(557) = 1 since 557 = 12^2 + 413 with phi(12^2)*phi(413) - 1 = 48*348 - 1 = 16703 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[EulerPhi[k^2]*EulerPhi[n-k^2]-1],1,0],{k,1,Sqrt[n-1]}]
    Table[a[n],{n,1,100}]

A242959 Numbers n such that 5^A000010(n) == 1 (mod n^2).

Original entry on oeis.org

2, 20771, 40487, 41542, 80974, 83084, 161948, 643901, 1255097, 1287802, 1391657, 1931703, 2510194, 2575604, 2783314, 3765291, 3863406, 4174971, 5020388, 5151208, 5566628, 7530582, 7726812, 8349942, 10040776, 11133256, 15061164, 15308227, 15453624, 16699884
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Crossrefs

If a(n) is prime, then a(n) is in A123692.

Programs

  • Mathematica
    Select[Range[167*10^5],PowerMod[5,EulerPhi[#],#^2]==1&] (* Harvey P. Dale, Jun 02 2020 *)
  • PARI
    for(n=2, 10^9, if(Mod(5, n^2)^(eulerphi(n))==1, print1(n, ", ")))

A306071 Decimal expansion of Sum_{n>=1} (-1)^omega(n) phi(n)^2/n^4, where omega(n) is the number of distinct prime factors of n (A001221) and phi is Euler's totient function (A000010).

Original entry on oeis.org

8, 0, 7, 3, 3, 0, 8, 2, 1, 6, 3, 6, 2, 0, 5, 0, 3, 9, 1, 4, 8, 6, 5, 4, 2, 7, 9, 9, 3, 0, 0, 3, 1, 1, 3, 4, 0, 2, 5, 8, 4, 5, 8, 2, 5, 0, 8, 1, 5, 5, 6, 6, 4, 4, 0, 1, 8, 0, 0, 5, 2, 0, 7, 7, 0, 4, 4, 1, 3, 8, 1, 4, 8, 4, 9, 3, 7, 5, 1, 8, 6, 4, 9, 6, 9, 5, 6, 0, 9, 3, 5, 0, 9, 6, 2, 9, 4, 8, 3, 7, 6, 5, 0, 1, 1, 8
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant A that appears in the asymptotic formulae for the sums of the bi-unitary divisor function (A306069) and the bi-unitary totient function (A306070).
The product in Suryanarayana's 1972 paper has a error that was corrected in his 1975 paper.
The probability that 2 randomly selected numbers will be unitary coprime (i.e. their largest common unitary divisor is 1). - Amiram Eldar, Aug 27 2019

Examples

			0.80733082163620503914...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[Log[1 - (p - 1)/(p^2*(p + 1))] /. p -> 1/x, {x, 0, 36}], x]; f = FindSequenceFunction[cc]; digits = 20; A = Exp[NSum[f[n + 1 // Floor]*(PrimeZetaP[n]), {n, 2, Infinity}, NSumTerms -> 16 digits, WorkingPrecision -> 16 digits]]; RealDigits[A, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    $MaxExtraPrecision = 1000; Do[Print[Zeta[2] * Exp[-N[Sum[q = Expand[(2*p^2 - 2*p^3 + p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}], 120]]], {t, 300, 1000, 100}] (* Vaclav Kotesovec, May 29 2020 *)
  • PARI
    prodeulerrat(1 - (p-1)/(p^2 * (p+1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Product_{p prime} (1 - (p-1)/(p^2 * (p+1))).
Equals zeta(2) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4).

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
a(20)-a(24) from Jon E. Schoenfield, May 27 2019
More terms from Vaclav Kotesovec, May 29 2020
Previous Showing 51-60 of 4244 results. Next