cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 109 results. Next

A002033 Number of perfect partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

Keywords

Comments

A perfect partition of n is one which contains just one partition of every number less than n when repeated parts are regarded as indistinguishable. Thus 1^n is a perfect partition for every n; and for n = 7, 4 1^3, 4 2 1, 2^3 1 and 1^7 are all perfect partitions. [Riordan]
Also number of ordered factorizations of n+1, see A074206.
Also number of gozinta chains from 1 to n (see A034776). - David W. Wilson
a(n) is the permanent of the n X n matrix with (i,j) entry = 1 if j|i+1 and = 0 otherwise. For n=3 the matrix is {{1, 1, 0}, {1, 0, 1}, {1, 1, 0}} with permanent = 2. - David Callan, Oct 19 2005
Appears to be the number of permutations that contribute to the determinant that gives the Moebius function. Verified up to a(9). - Mats Granvik, Sep 13 2008
Dirichlet inverse of A153881 (assuming offset 1). - Mats Granvik, Jan 03 2009
Equals row sums of triangle A176917. - Gary W. Adamson, Apr 28 2010
A partition is perfect iff it is complete (A126796) and knapsack (A108917). - Gus Wiseman, Jun 22 2016
a(n) is also the number of series-reduced planted achiral trees with n + 1 unlabeled leaves, where a rooted tree is series-reduced if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. Also Moebius transform of A067824. - Gus Wiseman, Jul 13 2018

Examples

			n=0: 1 (the empty partition)
n=1: 1 (1)
n=2: 1 (11)
n=3: 2 (21, 111)
n=4: 1 (1111)
n=5: 3 (311, 221, 11111)
n=6: 1 (111111)
n=7: 4 (4111, 421, 2221, 1111111)
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(11) = 8 series-reduced planted achiral trees with 12 unlabeled leaves:
  (oooooooooooo)
  ((oooooo)(oooooo))
  ((oooo)(oooo)(oooo))
  ((ooo)(ooo)(ooo)(ooo))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  (((ooo)(ooo))((ooo)(ooo)))
  (((oo)(oo)(oo))((oo)(oo)(oo)))
  (((oo)(oo))((oo)(oo))((oo)(oo)))
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • D. E. Knuth, The Art of Computer Programming, Pre-Fasc. 3b, Sect. 7.2.1.5, no. 67, p. 25.
  • P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math., 20 (1891), 103-119.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 123-124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A074206, up to the offset and initial term there.
Cf. A176917.
For parity see A008966.

Programs

  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    # alternative
    A002033 := proc(n)
        option remember;
        local a;
        if n <= 2 then
            return 1;
        else
            a := 0 ;
            for i from 0 to n-1 do
                if modp(n+1,i+1) = 0 then
                    a := a+procname(i);
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[96]  (* Jean-François Alcover, Apr 06 2011, updated Sep 23 2014. NOTE: This produces A074206(n) = a(n-1). - M. F. Hasler, Oct 12 2018 *)
  • PARI
    A002033(n) = if(n,sumdiv(n+1,i,if(i<=n,A002033(i-1))),1) \\ Michael B. Porter, Nov 01 2009, corrected by M. F. Hasler, Oct 12 2018
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A002033(n):
        if n <= 1:
            return 1
        return sum(A002033(i-1) for i in divisors(n+1,generator=True) if i <= n) # Chai Wah Wu, Jan 12 2022

Formula

From David Wasserman, Nov 14 2006: (Start)
a(n-1) = Sum_{i|d, i < n} a(i-1).
a(p^k-1) = 2^(k-1).
a(n-1) = A067824(n)/2 for n > 1.
a(A122408(n)-1) = A122408(n)/2. (End)
a(A025487(n)-1) = A050324(n). - R. J. Mathar, May 26 2017
a(n) = (A253249(n+1)+1)/4, n > 0. - Geoffrey Critzer, Aug 19 2020

Extensions

Edited by M. F. Hasler, Oct 12 2018

A003238 Number of rooted trees with n vertices in which vertices at the same level have the same degree.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 40, 41, 53, 61, 77, 78, 104, 105, 134, 147, 175, 176, 227, 233, 275, 294, 350, 351, 438, 439, 516, 545, 624, 640, 774, 775, 881, 924, 1069, 1070, 1265, 1266, 1444, 1521, 1698, 1699
Offset: 1

Views

Author

Keywords

Comments

Also, number of sequences of positive integers b_1, b_2, ..., b_k such that 1 + b_1*(1 + b_2*(...(1 + b_k) ... )) = n. If you take mu(b_1)*mu(b_2)*...*mu(b_k) for each sequence you get 1's 0's and -1's. Add them up and you get the terms for A007554. - Christian G. Bower, Oct 15 1998
Note that this applies also to planar rooted trees and other similar objects (mountain ranges, parenthesizations) encoded by A014486. - Antti Karttunen, Sep 07 2000
Equals sum of (n-1)-th row terms of triangle A152434. - Gary W. Adamson, Dec 04 2008
Equals the eigensequence of A051731, the inverse binomial transform. - Gary W. Adamson, Dec 26 2008
From Emeric Deutsch, Aug 18 2012: (Start)
The considered rooted trees are called generalized Bethe trees; in the Goldberg-Livshitz reference they are called uniform trees.
Also, a(n) = number of partitions of n-1 in which each part is divisible by the next. Example: a(5)=5 because we have 4, 31, 22, 211, and 1111.
There is a simple bijection between generalized Bethe trees with n+1 vertices and partitions of n in which each part is divisible by the next (the parts are given by the number of edges at the successive levels). We have the correspondences: number of edges --- sum of parts; root degree --- last part; number of leaves --- first part; height --- number of parts. (End)
a(n+1) = a(n) + 1 if and only if n is prime. - Jon Perry, Nov 24 2012
According to the MathOverflow link, log(a(n)) ~ log(4)*log(n)^2, and a more precise asymptotic expansion is similar to that of A018819 and hence A000123, so the conjecture in the Formula section is partly correct. - Andrey Zabolotskiy, Jan 22 2017

Examples

			a(4) = 3 because we have the path P(4), the tree Y, and the star \|/ . - _Emeric Deutsch_, Aug 18 2012
The planted achiral trees with up to 7 nodes are:
 1  -
 1  (-)
 2  (--),     ((-))
 3  (---),    ((--)),      (((-)))
 5  (----),   ((-)(-)),    ((---)),    (((--))),     ((((-))))
 6  (-----),  ((----)),    (((-)(-))), (((---))),    ((((--)))), (((((-)))))
10 (------), ((-)(-)(-)), ((--)(--)), (((-))((-))), ((-----)),  (((----))), ((((-)(-)))), ((((---)))), (((((--))))), ((((((-)))))). - _Gus Wiseman_, Jan 12 2017
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A122934 (offset by 1).

Programs

  • Haskell
    a003238 n = a003238_list !! (n-1)
    a003238_list = 1 : f 1 where
       f x = (sum (map a003238 $ a027750_row x)) : f (x + 1)
    -- Reinhard Zumkeller, Dec 20 2014
    
  • JavaScript
    a = new Array();
    for (i = 1; i < 50; i++) a[i] = 1;
    for (i = 3; i < 50; i++) for (j = 2; j < i; j++) if (i % j == 1) a[i] += a[j];
    document.write(a + "
    "); // Jon Perry, Nov 20 2012
  • Maple
    with(numtheory): aa := proc (n) if n = 0 then 1 else add(aa(divisors(n)[i]-1), i = 1 .. tau(n)) end if end proc: a := proc (n) options operator, arrow: aa(n-1) end proc: seq(a(n), n = 1 .. 48); # Emeric Deutsch, Aug 18 2012
    A003238:= proc(n) option remember; uses numtheory; add(A003238(m),m=divisors(n-1)) end proc;
    A003238(1):= 1;
    [seq(A003238(n),n=1..48)]; # Robert Israel, Mar 10 2014
  • Mathematica
    (* b = A068336 *) b[1] = 1; b[n_] := b[n] = 1 + Sum[b[k], {k, Divisors[n-1]}]; a[n_] := b[n]/2; a[1] = 1; Table[ a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 20 2011, after Ralf Stephan *)
    achi[n_]:=If[n===1,1,Total[achi/@Divisors[n-1]]];Array[achi,50] (* Gus Wiseman, Jan 12 2017 *)
  • PARI
    seq(n) = {my(v=vector(n)); v[1]=1; for(i=2, n, v[i]=sumdiv(i-1, d, v[d])); v} \\ Andrew Howroyd, Jun 08 2025

Formula

Shifts one place left under inverse Moebius transform: a(n+1) = Sum_{k|n} a(k).
Conjecture: log(a(n)) is asymptotic to c*log(n)^2 where 0.4 < c < 0.5 - Benoit Cloitre, Apr 13 2004
For n > 1, a(n) = (1/2) * A068336(n) and Sum_{k = 1..n} a(k) = A003318(n). - Ralf Stephan, Mar 27 2004
Generating function P(x) for the sequence with offset 2 obeys P(x) = x^2*(1 + Sum_{n >= 1} P(x^n)/x^n). [Harary & Robinson]. - R. J. Mathar, Sep 28 2011
a(n) = 1 + sum of a(i) such that n == 1 (mod i). - Jon Perry, Nov 20 2012
From Ilya Gutkovskiy, Apr 28 2019: (Start)
G.f.: x * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{n>=1} (1 - x^n)^(a(n)/n)) = Sum_{n>=1} a(n+1)*x^n/n. (End)

Extensions

Description improved by Christian G. Bower, Oct 15 1998

A018819 Binary partition function: number of partitions of n into powers of 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 202, 202, 238, 238, 284, 284, 330, 330, 390, 390, 450, 450, 524, 524, 598, 598, 692, 692, 786, 786, 900, 900, 1014, 1014, 1154, 1154, 1294, 1294
Offset: 0

Views

Author

Keywords

Comments

First differences of A000123; also A000123 with terms repeated. See the relevant proof that follows the first formula below.
Among these partitions there is exactly one partition with all distinct terms, as every number can be expressed as the sum of the distinct powers of 2.
Euler transform of A036987 with offset 1.
a(n) is the number of "non-squashing" partitions of n, that is, partitions n = p_1 + p_2 + ... + p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k. - N. J. A. Sloane, Nov 30 2003
Normally the OEIS does not include sequences like this where every term is repeated, but an exception was made for this one because of its importance. The unrepeated sequence A000123 is the main entry.
Number of different partial sums from 1 + [1, *2] + [1, *2] + ..., where [1, *2] means we can either add 1 or multiply by 2. E.g., a(6) = 6 because we have 6 = 1 + 1 + 1 + 1 + 1 + 1 = (1+1) * 2 + 1 + 1 = 1 * 2 * 2 + 1 + 1 = (1+1+1) * 2 = 1 * 2 + 1 + 1 + 1 + 1 = (1*2+1) * 2 where the connection is defined via expanding each bracket; e.g., this is 6 = 1 + 1 + 1 + 1 + 1 + 1 = 2 + 2 + 1 + 1 = 4 + 1 + 1 = 2 + 2 + 2 = 2 + 1 + 1 + 1 + 1 = 4 + 2. - Jon Perry, Jan 01 2004
Number of partitions p of n such that the number of compositions generated by p is odd. For proof see the Alekseyev and Adams-Watters link. - Vladeta Jovovic, Aug 06 2007
Differs from A008645 first at a(64). - R. J. Mathar, May 28 2008
Appears to be row sums of A155077. - Mats Granvik, Jan 19 2009
Number of partitions (p_1, p_2, ..., p_k) of n, with p_1 >= p_2 >= ... >= p_k, such that for each i, p_i >= p_{i+1} + ... + p_k. - John MCKAY (mckay(AT)encs.concordia.ca), Mar 06 2009 (these are the "non-squashing" partitions as nonincreasing lists).
Equals rightmost diagonal of triangle of A168261. Starting with offset 1 = eigensequence of triangle A115361 and row sums of triangle A168261. - Gary W. Adamson, Nov 21 2009
Equals convolution square root of A171238: (1, 2, 5, 8, 16, 24, 40, 56, 88, ...). - Gary W. Adamson, Dec 05 2009
Let B = the n-th convolution power of the sequence and C = the aerated variant of B. It appears that B/C = the binomial sequence beginning (1, n, ...). Example: Third convolution power of the sequence is (1, 3, 9, 19, 42, 78, 146, ...), with C = (1, 0, 3, 0, 9, 0, 19, ...). Then B/C = (1, 3, 6, 10, 15, 21, ...). - Gary W. Adamson, Aug 15 2016
From Gary W. Adamson, Sep 08 2016: (Start)
The limit of the matrix power M^k as n-->inf results in a single column vector equal to the sequence, where M is the following production matrix:
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
a(n) is the number of "non-borrowing" partitions of n, meaning binary subtraction of a smaller part from a larger part will never require place-value borrowing. - David V. Feldman, Jan 29 2020
From Gus Wiseman, May 25 2024: (Start)
Also the number of multisets of positive integers whose binary rank is n, where the binary rank of a multiset m is given by Sum_i 2^(m_i-1). For example, the a(1) = 1 through a(8) = 10 multisets are:
{1} {2} {12} {3} {13} {23} {123} {4}
{11} {111} {22} {122} {113} {1113} {33}
{112} {1112} {222} {1222} {223}
{1111} {11111} {1122} {11122} {1123}
{11112} {111112} {2222}
{111111} {1111111} {11113}
{11222}
{111122}
{1111112}
{11111111}
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 10*x^8 + ...
a(4) = 4: the partitions are 4, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
a(7) = 6: the partitions are 4 + 2 + 1, 4 + 1 + 1 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.
From _Joerg Arndt_, Dec 17 2012: (Start)
The a(10) = 14 binary partitions of 10 are (in lexicographic order)
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 1 1 1 1 1 1 1 1 ]
[ 3]  [ 2 2 1 1 1 1 1 1 ]
[ 4]  [ 2 2 2 1 1 1 1 ]
[ 5]  [ 2 2 2 2 1 1 ]
[ 6]  [ 2 2 2 2 2 ]
[ 7]  [ 4 1 1 1 1 1 1 ]
[ 8]  [ 4 2 1 1 1 1 ]
[ 9]  [ 4 2 2 1 1 ]
[10]  [ 4 2 2 2 ]
[11]  [ 4 4 1 1 ]
[12]  [ 4 4 2 ]
[13]  [ 8 1 1 ]
[14]  [ 8 2 ]
The a(11) = 14 binary partitions of 11 are obtained by appending 1 to each partition in the list.
The a(10) = 14 non-squashing partitions of 10 are (in lexicographic order)
[ 1]  [ 6 3 1 1 ]
[ 2]  [ 6 3 2 ]
[ 3]  [ 6 4 1 ]
[ 4]  [ 6 5 ]
[ 5]  [ 7 2 1 1 ]
[ 6]  [ 7 2 2 ]
[ 7]  [ 7 3 1 ]
[ 8]  [ 7 4 ]
[ 9]  [ 8 2 1 ]
[10]  [ 8 3 ]
[11]  [ 9 1 1 ]
[12]  [ 9 2 ]
[13]  [ 10 1 ]
[14]  [ 11 ]
The a(11) = 14 non-squashing partitions of 11 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _David V. Feldman_, Jan 29 2020: (Start)
The a(10) = 14 non-borrowing partitions of 10 are (in lexicographic order)
[ 1] [1 1 1 1 1 1 1 1 1 1]
[ 2] [2 2 2 2 2]
[ 3] [3 1 1 1 1 1 1 1]
[ 4] [3 3 1 1 1 1]
[ 5] [3 3 2 2]
[ 6] [3 3 3 1]
[ 7] [5 1 1 1 1 1]
[ 8] [5 5]
[ 9] [6 2 2]
[10] [6 4]
[11] [7 1 1 1]
[12] [7 3]
[13] [9 1]
[14] [10]
The a(11) = 14 non-borrowing partitions of 11 are obtained either by adding 1 to the first even part in each partition (if any) or else appending a 1 after the last part.
(End)
For example, the five partitions of 4, written in nonincreasing order, are [1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]. The last four satisfy the condition, and a(4) = 4. The Maple program below verifies this for small values of n.
		

Crossrefs

A000123 is the main entry for the binary partition function and gives many more properties and references.
Cf. A115625 (labeled binary partitions), A115626 (labeled non-squashing partitions).
Convolution inverse of A106400.
Multiplicity of n in A048675, for distinct prime indices A087207.
Row lengths of A277905.
A118462 lists binary ranks of strict integer partitions, row sums A372888.
A372890 adds up binary ranks of integer partitions.

Programs

  • Haskell
    a018819 n = a018819_list !! n
    a018819_list = 1 : f (tail a008619_list) where
       f (x:xs) = (sum $ take x a018819_list) : f xs
    -- Reinhard Zumkeller, Jan 28 2012
    
  • Haskell
    import Data.List (intersperse)
    a018819 = (a018819_list !!)
    a018819_list = 1 : 1 : (<*>) (zipWith (+)) (intersperse 0) (tail a018819_list)
    -- Johan Wiltink, Nov 08 2018
    
  • Maple
    with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
    for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
    for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
    # while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
    while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
    if j=nr then t:=t+1;fi od; a[n]:=t; od; # John McKay
  • Mathematica
    max = 59; a[0] = a[1] = 1; a[n_?OddQ] := a[n] = a[n-1]; a[n_?EvenQ] := a[n] = a[n-1] + a[n/2]; Table[a[n], {n, 0, max}]
    (* or *) CoefficientList[Series[1/Product[(1-x^(2^j)), {j, 0, Log[2, max] // Ceiling}], {x, 0, max}], x] (* Jean-François Alcover, May 17 2011, updated Feb 17 2014 *)
    a[ n_] := If[n<1, Boole[n==0], a[n] = a[n-1] + If[EvenQ@n, a[Quotient[n,2]], 0]]; (* Michael Somos, May 04 2022 *)
    Table[Count[IntegerPartitions[n],?(AllTrue[Log2[#],IntegerQ]&)],{n,0,60}] (* _Harvey P. Dale, Jun 20 2024 *)
  • PARI
    { n=15; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]*2)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } /* Jon Perry */
    
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) / (1 - x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, if( n%2, a(n-1), a(n/2)+a(n-1)))}; /* Michael Somos, Aug 25 2003 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A018819(n): return 1 if n == 0 else A018819(n-1) + (0 if n % 2 else A018819(n//2)) # Chai Wah Wu, Jan 18 2022

Formula

a(2m+1) = a(2m), a(2m) = a(2m-1) + a(m). Proof: If n is odd there is a part of size 1; removing it gives a partition of n - 1. If n is even either there is a part of size 1, whose removal gives a partition of n - 1, or else all parts have even sizes and dividing each part by 2 gives a partition of n/2.
G.f.: 1 / Product_{j>=0} (1-x^(2^j)).
a(n) = (1/n)*Sum_{k = 1..n} A038712(k)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
a(2*n) = a(2*n + 1) = A000123(n). - Michael Somos, Aug 25 2003
a(n) = 1 if n = 0, Sum_{j = 0..floor(n/2)} a(j) if n > 0. - David W. Wilson, Aug 16 2007
G.f. A(x) satisfies A(x^2) = (1-x) * A(x). - Michael Somos, Aug 25 2003
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w - 2*u*v^2 + v^3. - Michael Somos, Apr 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6 * u1^3 - 3*u3*u2*u1^2 + 3*u3*u2^2*u1 - u3*u2^3. - Michael Somos, Oct 15 2006
G.f.: 1/( Sum_{n >= 0} x^evil(n) - x^odious(n) ), where evil(n) = A001969(n) and odious(n) = A000069(n). - Paul D. Hanna, Jan 23 2012
Let A(x) by the g.f. and B(x) = A(x^k), then 0 = B*((1-A)^k - (-A)^k) + (-A)^k, see fxtbook link. - Joerg Arndt, Dec 17 2012
G.f.: Product_{n>=0} (1+x^(2^n))^(n+1), see the fxtbook link. - Joerg Arndt, Feb 28 2014
G.f.: 1 + Sum_{i>=0} x^(2^i) / Product_{j=0..i} (1 - x^(2^j)). - Ilya Gutkovskiy, May 07 2017

A002577 Number of partitions of 2^n into powers of 2.

Original entry on oeis.org

1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518948, 316359580362, 77477180493604, 34394869942983370, 27893897106768940836, 41603705003444309596874, 114788185359199234852802340, 588880400923055731115178072778, 5642645813427132737155703265972004
Offset: 0

Views

Author

Keywords

Comments

For given m, the general formula for t_m(n, k) and the corresponding tables T, computed as in the example, determine a family of related sequences (placed in the rows or in the columns of T). For example, the numbers from the second row of T, computed for given m and n > 2, are the (m+2)-gonal numbers. So the second row contains the first members of: A000290 (the square numbers) when m=2, A000326 (the pentagonal numbers) when m=3, and so on. But rows IV, V etc. of the given table are not represented in the OEIS till now. - Valentin Bakoev, Feb 25 2009; edited by M. F. Hasler, Feb 09 2014

Examples

			To compute t_2(6,1) we can use a table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,6(=n), and j= 0,1,2,...,32(= k*m^{n-1}). It is: 1,2,3,4,5,6,7,8,9...,33; 1,4,9,16,25,36,49...,81; (so the second row contains the first members of A000290 -- the square numbers) 1,10,35,84,165,...,969; (so the third row contains the first members of A000447. The r-th tetrahedral number is given by formula r(r+1)(r+2)/6. This row (also A000447) contains the tetrahedral numbers, obtained for r=1,3,5,7,...) 1,36,201,656,1625; 1,202,1827; 1,1828; Column 1 contains the first 6 members of A002577. - _Valentin Bakoev_, Feb 25 2009
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 202*x^5 + 1828*x^6 + ...
		

References

  • R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • Lawrence, Jim. "Dual-Antiprisms and Partitions of Powers of 2 into Powers of 2." Discrete & Computational Geometry, Vol. 16 (2019): 465-478. See page 466.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A000123(2^(n-1)) = A018818(2^n).
Column k=2 of A145515, diagonal of A152977. - Alois P. Heinz, Mar 25 2012
See also A002575, A002576.
A column of A125790.

Programs

  • Haskell
    import Data.MemoCombinators (memo2, list, integral)
    a002577 n = a002577_list !! n
    a002577_list = f [1] where
       f xs = (p' xs $ last xs) : f (1 : map (* 2) xs)
       p' = memo2 (list integral) integral p
       p  0 = 1; p []  = 0
       p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
    -- Reinhard Zumkeller, Nov 27 2015
  • Maple
    A002577 := proc(n) if n<=1 then n+1 else A000123(2^(n-1)); fi; end;
  • Mathematica
    $RecursionLimit = 10^5; (* b = A000123 *) b[0] = 1; b[n_?EvenQ] := b[n] = b[n-1] + b[n/2]; b[n_?OddQ] := b[n] = b[n-1] + b[(n-1)/2]; a[n_] := b[2^(n-1)]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 23 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^2^k, {k, 0, n}], {x, 0, 2^n}]; (* Michael Somos, Apr 21 2014 *)
  • PARI
    a(n)=polcoeff(prod(j=0,n,1/(1-x^(2^j)+x*O(x^(2^n)))),2^n) \\ Paul D. Hanna
    

Formula

a(n) is about 0.9233*Sum_j {i=0, 1, 2, 3, ...} 2^(j*(2n-j-1)/2)/j!. - Henry Bottomley, Jul 23 2003
a(n) = A078121(n+1, 1). - Paul D. Hanna, Sep 13 2004
A002577(n)-1 = A125792(n). - Let m > 1, n > 0 and k >= 0. The general formula for the number of all partitions of k*m^n into powers of m is t_m(n, k)= k+1 if n=1, t_m(n, k)= 1 if k=0, and t_m(n, k)= t_m(n, k-1) + t_m(n-1, k*m) if n > 1 and k > 0. A002577 is obtained for m=2 and n=1,2,3,... - Valentin Bakoev, Feb 25 2009
a(n) = [x^(2^n)] 1/Product_{j>=0} (1-x^(2^j)). - Alois P. Heinz, Sep 27 2011

Extensions

Edited by M. F. Hasler, Feb 09 2014

A033485 a(n) = a(n-1) + a(floor(n/2)), a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 83, 101, 119, 142, 165, 195, 225, 262, 299, 346, 393, 450, 507, 577, 647, 730, 813, 914, 1015, 1134, 1253, 1395, 1537, 1702, 1867, 2062, 2257, 2482, 2707, 2969, 3231, 3530, 3829, 4175, 4521, 4914, 5307, 5757
Offset: 1

Views

Author

N. J. A. Sloane. This was in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Philippe Deléham. Entry revised by N. J. A. Sloane, Jun 10 2012

Keywords

Comments

Sequence gives the number of partitions of 2n into "strongly decreasing" parts (see the function s*(n) in the paper by Bessenrodt, Olsson, and Sellers); see the example in A040039.
a(A036554(n)) is even, a(A003159(n)) is odd. - Benoit Cloitre, Oct 23 2002
Partial sums of the sequence a(1)=1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), ...; example: a(1) = 1, a(2) = 1+1 = 2, a(3) = 1+1+1 = 3, a(4) = 1+1+1+2 = 5, a(5) = 1+1+1+2+2 = 7, ... - Philippe Deléham, Jan 02 2004
The number of odd numbers before the n-th even number in this sequence is A003156(n). - Philippe Deléham, Mar 27 2004
There are no terms divisible by 4 and there are infinitely many terms divisible by {2,3,5,6,7,9,10,11,13,14,15} (see van Doorn link). - Ivan N. Ianakiev, Aug 06 2022 and Wouter van Doorn, Sep 17 2024
a(n) = A001401(n), for 1..14. A001401(15) = 84. - Wolfdieter Lang, Jan 09 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A040039 (first differences), A178855 (partial sums).
Also half of A000123 (with first term omitted).
Cf. A022907.

Programs

  • Haskell
    import Data.List (transpose)
    a033485 n = a033485_list !! (n-1)
    a033485_list = 1 : zipWith (+)
       a033485_list (concat $ transpose [a033485_list, a033485_list])
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Magma
    [n le 1 select 1 else Self(n-1) + Self(Floor(n/2)) : n in [1..60]]; // Vincenzo Librandi, Nov 20 2015
    
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, a(n-1)+a(iquo(n, 2)))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Dec 16 2019
  • Mathematica
    b[1]=1; b[n_] := b[n]=Sum[b[k], {k, 1, n/2}]; Table[b[n], {n, 3, 105, 2}] (* Robert G. Wilson v, Apr 22 2001 *)
  • PARI
    a(n)=if(n<2,1,a(floor(n/2))+a(n-1))
    
  • Python
    from itertools import islice
    from collections import deque
    def A033485_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 2)
        while True:
            a += b
            yield a
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A033485_list = list(islice(A033485_gen(),40)) # Chai Wah Wu, Jun 07 2022

Formula

a(n) = A000123(n)/2, for n >= 1.
Conjecture: lim_{n->oo} a(2n)/a(n)*log(n)/n = c = 1.64.... and a(n)/A(n) is bounded where A(n)=1 if n is a power of 2, otherwise A(n) = sqrt(n)*Product_{kBenoit Cloitre, Jan 26 2003
G.f.: A(x) satisfies x + (1+x)*A(x^2) = (1-x)*A(x). a(n) modulo 2 = A035263(n). - Philippe Deléham, Feb 25 2004
G.f.: (1/2)*(((1-x)*Product_{n>=0} (1-x^(2^n)))^(-1)-1). a(n) modulo 4 = A007413(n). - Philippe Deléham, Feb 28 2004
Sum_{k=1..n} a(k) = (a(2n+1)-1)/2 = A178855(n). - Philippe Deléham, Mar 18 2004
a(2n-1) = A131205(n). - Jean-Paul Allouche, Aug 11 2021
There exists a function f(n) such that n^f(n) < a(n) < n^(f(n) + epsilon) for all epsilon > 0 and all large enough n. - Wouter van Doorn, Sep 17 2024

A005703 Number of n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024

Examples

			From _Gus Wiseman_, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
  {}  .  {12}  {12,13}     {12,13,14}     {12,13,14,15}
               {12,13,23}  {12,13,24}     {12,13,14,25}
                           {12,13,14,23}  {12,13,24,35}
                           {12,13,24,34}  {12,13,14,15,23}
                                          {12,13,14,23,25}
                                          {12,13,14,23,45}
                                          {12,13,14,25,35}
                                          {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055, A000081, A001429 (labeled A057500), A134964 (number of pseudoforests, labeled A133686).
The labeled version is A129271.
The connected complement is A140636, labeled A140638.
Non-connected: A368834 (labeled A367869) or A370316 (labeled A369191).
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A062734 counts connected graphs by number of edges.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
    a[0] = 0;
    b = Drop[Flatten[
        sol = SolveAlways[
          0 == Series[
            t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
          x]; Table[a[n], {n, 0, nn}] /. sol], 1];
    r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
    Drop[Table[
        CoefficientList[
         Series[CycleIndex[DihedralGroup[n], s] /.
           Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
         nn}] // Total, 1];
    d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
    Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021

Formula

a(n) = A000055(n) + A001429(n).

Extensions

More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008

A040039 First differences of A033485; also A033485 with terms repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 13, 18, 18, 23, 23, 30, 30, 37, 37, 47, 47, 57, 57, 70, 70, 83, 83, 101, 101, 119, 119, 142, 142, 165, 165, 195, 195, 225, 225, 262, 262, 299, 299, 346, 346, 393, 393, 450, 450, 507, 507, 577, 577, 647, 647, 730, 730, 813, 813, 914, 914, 1015, 1015, 1134, 1134, 1253, 1253, 1395, 1395
Offset: 0

Views

Author

Keywords

Comments

Apparently a(n) = number of partitions (p_1, p_2, ..., p_k) of n+1, with p_1 >= p_2 >= ... >= p_k, such that for each i, p_i > p_{i+1}+...+p_k. - John McKay (mac(AT)mathstat.concordia.ca), Mar 06 2009
Comment from John McKay confirmed in paper by Bessenrodt, Olsson, and Sellers. Such partitions are called "strongly decreasing" partitions in the paper, see the function s(n) therein.
Also the number of unlabeled binary rooted trees with 2*n + 3 nodes in which the two branches directly under any given non-leaf node are either equal or at least one of them is a leaf. - Gus Wiseman, Oct 08 2018
From Gus Wiseman, Apr 06 2021: (Start)
This sequence counts both of the following essentially equivalent things:
1. Sets of distinct positive integers with maximum n + 1 in which all adjacent elements have quotients < 1/2. For example, the a(0) = 1 through a(8) = 7 subsets are:
{1} {2} {3} {4} {5} {6} {7} {8} {9}
{1,3} {1,4} {1,5} {1,6} {1,7} {1,8} {1,9}
{2,5} {2,6} {2,7} {2,8} {2,9}
{3,7} {3,8} {3,9}
{1,3,7} {1,3,8} {4,9}
{1,3,9}
{1,4,9}
2. Sets of distinct positive integers with maximum n + 1 whose first differences are term-wise greater than their decapitation (remove the maximum). For example, the set q = {1,4,9} has first differences (3,5), which are greater than (1,4), so q is counted under a(8). On the other hand, r = {1,5,9} has first differences (4,4), which are not greater than (1,5), so r is not counted under a(8).
Also the number of partitions of n + 1 into powers of 2 covering an initial interval of powers of 2. For example, the a(0) = 1 through a(8) = 7 partitions are:
1 11 21 211 221 2211 421 4211 4221
111 1111 2111 21111 2221 22211 22221
11111 111111 22111 221111 42111
211111 2111111 222111
1111111 11111111 2211111
21111111
111111111
(End)

Examples

			From _Joerg Arndt_, Dec 17 2012: (Start)
The a(19-1)=30 strongly decreasing partitions of 19 are (in lexicographic order)
[ 1]    [ 10 5 3 1 ]
[ 2]    [ 10 5 4 ]
[ 3]    [ 10 6 2 1 ]
[ 4]    [ 10 6 3 ]
[ 5]    [ 10 7 2 ]
[ 6]    [ 10 8 1 ]
[ 7]    [ 10 9 ]
[ 8]    [ 11 5 2 1 ]
[ 9]    [ 11 5 3 ]
[10]    [ 11 6 2 ]
[11]    [ 11 7 1 ]
[12]    [ 11 8 ]
[13]    [ 12 4 2 1 ]
[14]    [ 12 4 3 ]
[15]    [ 12 5 2 ]
[16]    [ 12 6 1 ]
[17]    [ 12 7 ]
[18]    [ 13 4 2 ]
[19]    [ 13 5 1 ]
[20]    [ 13 6 ]
[21]    [ 14 3 2 ]
[22]    [ 14 4 1 ]
[23]    [ 14 5 ]
[24]    [ 15 3 1 ]
[25]    [ 15 4 ]
[26]    [ 16 2 1 ]
[27]    [ 16 3 ]
[28]    [ 17 2 ]
[29]    [ 18 1 ]
[30]    [ 19 ]
The a(20-1)=30 strongly decreasing partitions of 20 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _Gus Wiseman_, Oct 08 2018: (Start)
The a(-1) = 1 through a(4) = 3 semichiral binary rooted trees:
  o  (oo)  (o(oo))  ((oo)(oo))  (o((oo)(oo)))  ((o(oo))(o(oo)))
                    (o(o(oo)))  (o(o(o(oo))))  (o(o((oo)(oo))))
                                               (o(o(o(o(oo)))))
(End)
		

Crossrefs

Cf. A000123.
The equal case is A001511.
The reflected version is A045690.
The unequal (anti-run) version is A045691.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A018819 counts partitions into powers of 2.
A154402 counts partitions with all adjacent parts x = 2y.
A274199 counts compositions with all adjacent parts x < 2y.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with all adjacent parts x > 2y.
A342337 counts partitions with all adjacent parts x = y or x = 2y.

Programs

  • Maple
    # For example, the five partitions of 4, written in nonincreasing order, are
    # [1,1,1,1], [2,1,1], [2,2], [3,1], [4].
    # Only the last two satisfy the condition, and a(3)=2.
    # The Maple program below verifies this for small values of n.
    with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
    for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
    for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
    while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
    #while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
    if j=nr then t:=t+1;fi od; a[n]:=t; od;
    # John McKay
  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Binomial[n-2k-1, n-2k-m] Sum[Binomial[m, i] T[k, i], {i, 1, k}], {k, 0, (n-m)/2}] + Binomial[n-1, n-m];
    a[n_] := T[n+1, 1];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]<1/2,{i,2,Length[#]}]&]],{n,15}] (* Gus Wiseman, Apr 06 2021 *)
  • Maxima
    T(n,m):=sum(binomial(n-2*k-1,n-2*k-m)*sum(binomial(m,i)*T(k,i),i,1,k),k,0,(n-m)/2)+binomial(n-1,n-m);
    makelist(T(n+1,1),n,0,40); /* Vladimir Kruchinin, Mar 19 2015 */
    
  • PARI
    /* compute as "A033485 with terms repeated" */
    b(n) = if(n<2, 1, b(floor(n/2))+b(n-1));  /* A033485 */
    a(n) = b(n\2+1); /* note different offsets */
    for(n=0,99, print1(a(n),", ")); /* Joerg Arndt, Jan 21 2011 */
    
  • Python
    from itertools import islice
    from collections import deque
    def A040039_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 1, 2, 2)
        while True:
            a += b
            yield from (a, a)
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A040039_list = list(islice(A040039_gen(),40)) # Chai Wah Wu, Jun 07 2022

Formula

Let T(x) be the g.f, then T(x) = 1 + x/(1-x)*T(x^2) = 1 + x/(1-x) * ( 1 + x^2/(1-x^2) * ( 1 + x^4/(1-x^4) * ( 1 + x^8/(1-x^8) *(...) ))). [Joerg Arndt, May 11 2010]
From Joerg Arndt, Oct 02 2013: (Start)
G.f.: sum(k>=1, x^(2^k-1) / prod(j=0..k-1, 1-x^(2^k) ) ) [Bessenrodt/Olsson/Sellers].
G.f.: 1/(2*x^2) * ( 1/prod(k>=0, 1 - x^(2^k) ) - (1 + x) ).
a(n) = 1/2 * A018819(n+2).
(End)
a(n) = T(n+1,1), where T(n,m)=sum(k..0,(n-m)/2, binomial(n-2*k-1,n-2*k-m)*sum(i=1..k, binomial(m,i)*T(k,i)))+binomial(n-1,n-m). - Vladimir Kruchinin, Mar 19 2015
Using offset 1: a(1) = 1; a(n even) = a(n-1); a(n odd) = a(n-1) + a((n-1)/2). - Gus Wiseman, Oct 08 2018

A006336 a(n) = a(n-1) + a(n - 1 - number of even terms so far).

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 16, 21, 29, 40, 51, 67, 88, 109, 138, 167, 207, 258, 309, 376, 443, 531, 640, 749, 887, 1054, 1221, 1428, 1635, 1893, 2202, 2511, 2887, 3330, 3773, 4304, 4835, 5475, 6224, 6973, 7860, 8747, 9801, 11022, 12243, 13671, 15306, 16941
Offset: 1

Views

Author

D. R. Hofstadter, Jul 15 1977

Keywords

Comments

From T. D. Noe, Jul 27 2007: (Start)
This is similar to A000123 and A005704, which both have a recursion a(n)=a(n-1)+a([n/k]), where k is 2 and 3, respectively. Those sequences count "partitions of k*n into powers of k". For the present sequence, k=phi. Does A006336(n) count the partitions of n*phi into powers of phi?
Answering my own question: If the recursion starts with a(0)=1, then I think we obtain "number of partitions of n*phi into powers of phi" (see A131882).
Here we need negative powers of phi also: letting p=phi and q=1/phi, we have
n=0: 0*p = {} for 1 partition,
n=1: 1*p = p = 1+q for 2 partitions,
n=2: 2*p = p+p = 1+p+q = 1+1+q+q = p^2+q for 4 partitions, etc.
So the present sequence, which starts with a(1)=1, counts 1/2 of the "number of partitions of n*phi into powers of phi". (End)

Crossrefs

"Number of even terms so far" is A060144(n+1).

Programs

  • Haskell
    a006336 n = a006336_list !! (n-1)
    a006336_list = 1 : h 2 1 0 where
      h n last evens = x : h (n + 1) x (evens + 1 - x `mod` 2) where
        x = last + a006336 (n - 1 - evens)
    -- Reinhard Zumkeller, May 18 2011
  • Maple
    # Maple code for first M terms of a(n) and A060144, from N. J. A. Sloane, Oct 25 2014
    M:=100;
    v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1;
    for n from 3 to M do
       v[n]:=v[n-1]+v[n-1-w[n-1]];
    if v[n] mod 2 = 0 then w[n]:=w[n-1]+1 else w[n]:=w[n-1]; fi; od:
    [seq(v[n],n=1..M)]; # A006336
    [seq(w[n],n=1..M)]; # A060144 shifted
  • Mathematica
    a[n_Integer] := a[n] = Block[{c, k}, c = 0; k = 1; While[k < n, If[ EvenQ[ a[k] ], c++ ]; k++ ]; Return[a[n - 1] + a[n - 1 - c] ] ]; a[1] = 1; a[2] = 2; Table[ a[n], {n, 0, 60} ]
  • PARI
    A006336(N=99) = local(a=vector(N,i,1), e=0); for(n=2,#a,e+=0==(a[n]=a[n-1]+a[n-1-e])%2);a \\ M. F. Hasler, Jul 23 2007
    

Formula

It seems that A006336 can be generated by a rule using the golden ratio phi: a(n) = a(n-1) + a([n/Phi]) for n>1 with a(1)=1 where phi = (sqrt(5)+1)/2, I.e. the number of even terms up to position n-1 equals n-1 - [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. (This is true - see the Alekseyev link.) - Paul D. Hanna, Jul 22 2007
a(n) = a(n-1)+a(A060143(n)) for n>1; subsequence of A134409; A134408 and A134409 give first and second differences; A001950(n)=Min(m:A134409(m)=a(n)). - Reinhard Zumkeller, Oct 24 2007

Extensions

More terms from Robert G. Wilson v, Mar 07 2001
Entry revised by N. J. A. Sloane, Oct 25 2014

A062051 Number of partitions of n into powers of 3.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 23, 23, 23, 28, 28, 28, 33, 33, 33, 40, 40, 40, 47, 47, 47, 54, 54, 54, 63, 63, 63, 72, 72, 72, 81, 81, 81, 93, 93, 93, 105, 105, 105, 117, 117, 117, 132, 132, 132, 147, 147, 147, 162
Offset: 0

Views

Author

Amarnath Murthy, Jun 06 2001

Keywords

Comments

Number of different partial sums of 1+[1,*3]+[1,*3]+..., where [1,*3] means we can either add 1 or multiply by 3. E.g., a(6)=3 because we have 6=1+1+1+1+1+1=(1+1)*3=1*3+1+1+1. - Jon Perry, Jan 01 2004
Also number of partitions of n into distinct 3-smooth parts. E.g., a(10) = #{9+1, 8+2, 6+4, 6+3+1, 4+3+2+1} = #{9+1, 3+3+3+1, 3+3+1+1+1+1, 3+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1} = 5. - Reinhard Zumkeller, Apr 07 2005
Starts to differ from A008650 at a(81). - R. J. Mathar, Jul 31 2010
If m=ceiling(log_3(2k)) and n=(3^m+1)/2-k for k in the range (3^(m-1)+1)/2+(3^(m-2))<=k<=(3^m-1)/2, this sequence gives the number of "feasible" partitions described in the sequence A254296. For instance, the terms starting at 121st term of A254296 backwards to 68th term of A254296 provide the first 54 terms of this sequence. - Md. Towhidul Islam, Mar 01 2015
From Gary W. Adamson, Sep 03 2016: (Start)
Let M =
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 0, 0, ...
..., where the leftmost column is all 1's, and all other columns are 1's shifted down thrice. Lim_{k=1..inf} M^k has a single nonzero column, which gives the sequence. (End)

Examples

			a(4) = 2 and the partitions are 3+1, 1+1+1+1;
a(9) = 5 and the partitions are 9; 3+3+3; 3+3+1+1+1; 3+1+1+1+1+1+1; 1+1+1+1+1+1+1+1+1.
		

Crossrefs

Programs

  • Mathematica
    nn=70;a=Product[1/(1-x^(3^i)),{i,0,4}];CoefficientList[Series[a,{x,0,nn}],x] (* Geoffrey Critzer, Oct 30 2012 *)
  • PARI
    { n=15; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]*3)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A062051(n): return A062051(n-1)+(0 if n%3 else A062051(n//3)) if n>2 else 1 # Chai Wah Wu, Sep 21 2022

Formula

a(n) = A005704([n/3]).
G.f.: Product_{k>=0} 1/(1-x^(3^k)). - R. J. Mathar, Jul 31 2010
If m = ceiling(log_3(2k)), define n = (3^m + 1)/2 - k for k in the range (3^(m-1)+1)/2 + (3^(m-2)) <= k <= (3^m-1)/2. Then, a(n) = Sum_{s=ceiling((k-1)/3)..(3^(m-1)-1)/2} a(s). This gives the first 2(3^(m-1))/3 terms. - Md. Towhidul Islam, Mar 01 2015
G.f.: 1 + Sum_{i>=0} x^(3^i) / Product_{j=0..i} (1 - x^(3^j)). - Ilya Gutkovskiy, May 07 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2001

A005704 Number of partitions of 3n into powers of 3.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 33, 40, 47, 54, 63, 72, 81, 93, 105, 117, 132, 147, 162, 180, 198, 216, 239, 262, 285, 313, 341, 369, 402, 435, 468, 508, 548, 588, 635, 682, 729, 783, 837, 891, 954, 1017, 1080, 1152, 1224, 1296, 1377, 1458, 1539, 1632
Offset: 0

Views

Author

Keywords

Comments

Infinite convolution product of [1,2,3,3,3,3,3,3,3,3] aerated A000244 - 1 times, i.e., [1,2,3,3,3,3,3,3,3,3] * [1,0,0,2,0,0,3,0,0,3] * [1,0,0,0,0,0,0,0,0,2] * ... [Mats Granvik, Gary W. Adamson, Aug 07 2009]

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1, #1}]], #2]]] &, {1}, Range[2, 55]] (* Birkas Gyorgy, Apr 18 2011 *)
    a[n_] := a[n] = If[n <= 2, n + 1, a[n - 1] + a[Floor[n/3]]]; Array[a, 101, 0] (* T. D. Noe, Apr 18 2011 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A005704(n): return A005704(n-1)+A005704(n//3) if n else 1 # Chai Wah Wu, Sep 21 2022

Formula

a(n) = a(n-1)+a(floor(n/3)).
Coefficient of x^(3*n) in prod(k>=0, 1/(1-x^(3^k))). Also, coefficient of x^n in prod(k>=0, 1/(1-x^(3^k)))/(1-x). - Benoit Cloitre, Nov 28 2002
a(n) mod 3 = binomial(2n, n) mod 3. - Benoit Cloitre, Jan 04 2004
Let T(x) be the g.f., then T(x)=(1-x^3)/(1-x)^2*T(x^3). [Joerg Arndt, May 12 2010]

Extensions

Formula and more terms from Henry Bottomley, Apr 30 2001
Previous Showing 11-20 of 109 results. Next