A368951
Number of connected labeled graphs with n edges and n vertices and with loops allowed.
Original entry on oeis.org
1, 1, 2, 10, 79, 847, 11436, 185944, 3533720, 76826061, 1880107840, 51139278646, 1530376944768, 49965900317755, 1767387701671424, 67325805434672100, 2747849045156064256, 119626103584870552921, 5533218319763109888000, 270982462739224265922466
Offset: 0
From _Gus Wiseman_, Feb 12 2024: (Start)
The a(0) = 1 through a(3) = 10 loop-graphs:
{} {11} {11,12} {11,12,13}
{22,12} {11,12,23}
{11,13,23}
{22,12,13}
{22,12,23}
{22,13,23}
{33,12,13}
{33,12,23}
{33,13,23}
{12,13,23}
(End)
This is the connected covering case of
A014068.
Allowing any number of edges gives
A062740, connected case of
A322661.
This is the connected case of
A368597.
For at most n edges we have
A369197.
A000085 counts set partitions into singletons or pairs.
-
egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)):
a:= n-> n!*coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 10 2024
-
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}
A037205
a(n) = (n+1)^n - 1.
Original entry on oeis.org
0, 1, 8, 63, 624, 7775, 117648, 2097151, 43046720, 999999999, 25937424600, 743008370687, 23298085122480, 793714773254143, 29192926025390624, 1152921504606846975, 48661191875666868480, 2185911559738696531967, 104127350297911241532840, 5242879999999999999999999, 278218429446951548637196400, 15519448971100888972574851071
Offset: 0
- D. L. Johnson, Presentation of Groups, Cambridge, 1976, p. 182.
- Richard M. Thomas, The Fibonacci groups revisited, in Groups - St. Andrews 1989, Vol. 2, 445-454, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991.
-
[(n + 1)^n - 1: n in [0..25]]; // G. C. Greubel, Nov 10 2017
-
Table[(n + 1)^n - 1, {n, 0, 21}] (* or *)
Table[If[n < 1, Length@ #, FromDigits[#, n + 1]] &@ ConstantArray[n, n], {n, 0, 21}] (* Michael De Vlieger, Nov 30 2016 *)
-
for(n=0,25, print1((n + 1)^n - 1, ", ")) \\ G. C. Greubel, Nov 10 2017
A060313
Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) on n labeled nodes.
Original entry on oeis.org
1, 2, 0, 16, 25, 576, 2989, 51584, 512649, 8927200, 130956001, 2533847328, 48008533885, 1059817074512, 24196291364925, 609350187214336, 16135860325700881, 459434230368302016, 13788624945433889593, 439102289933675933600, 14705223056221892676741
Offset: 1
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches], empty column shown as dot) are:
1 1[2] . 1[2,3,4]
2[1] 1[2[3,4]]
1[3[2,4]]
1[4[2,3]]
2[1,3,4]
2[1[3,4]]
2[3[1,4]]
2[4[1,3]]
3[1,2,4]
3[1[2,4]]
3[2[1,4]]
3[4[1,2]]
4[1,2,3]
4[1[2,3]]
4[2[1,3]]
4[3[1,2]]
(End)
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
The unlabeled unrooted version is
A000014.
The lone-child-avoiding version is
A060356.
-
[1] cat [n*Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Mar 07 2020
-
seq( `if`(n=1, 1, n*(n-2)!*add((-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, k=0..n-2)), n=1..20); # G. C. Greubel, Mar 07 2020
-
f[n_] := If[n < 2, 1, n(n - 2)!Sum[(-1)^k*Binomial[n, k](n - k)^(n - 2 - k)/(n - 2 - k)!, {k, 0, n - 2}]]; Table[ f[n], {n, 19}] (* Robert G. Wilson v, Feb 12 2005 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
Table[Length[Select[lrt[Range[n]],Length[#]!=2&&FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
-
[1]+[n*factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020
A368924
Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
1 9 6 1
15 68 48 12 1
222 720 510 150 20 1
3670 9738 6825 2180 360 30 1
68820 159628 110334 36960 6895 735 42 1
Row n = 3 counts the following loop-graphs:
{{1,2},{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
Cf.
A000169,
A057500,
A062740,
A129271,
A133686,
A322661,
A367869,
A367902,
A368601,
A368835,
A368836,
A368927.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
-
T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024
A008789
a(n) = n^(n+3).
Original entry on oeis.org
0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008790,
A008791.
-
List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
-
[n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
-
Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A055858
Coefficient triangle for certain polynomials.
Original entry on oeis.org
1, 1, 2, 4, 9, 6, 27, 64, 48, 36, 256, 625, 500, 400, 320, 3125, 7776, 6480, 5400, 4500, 3750, 46656, 117649, 100842, 86436, 74088, 63504, 54432, 823543, 2097152, 1835008, 1605632, 1404928, 1229312, 1075648, 941192, 16777216, 43046721
Offset: 0
{1}; {1,2}; {4,9,6}; {27,64,48,36}; ...
Fourth row polynomial (n=3): p(3,x) = 27 + 64*x + 48*x^2 + 36*x^3.
-
a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)
A076113
a(n) = n^(n*(n-1)/2).
Original entry on oeis.org
1, 1, 2, 27, 4096, 9765625, 470184984576, 558545864083284007, 19342813113834066795298816, 22528399544939174411840147874772641, 1000000000000000000000000000000000000000000000, 1890591424712781041871514584574319778449301246603238034051
Offset: 0
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
A128433
Triangle, read by rows, T(n,k) = numerator of the maximum of the k-th Bernstein polynomial of degree n; denominator is A128434.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 27, 3, 27, 1, 1, 256, 216, 216, 256, 1, 1, 3125, 80, 5, 80, 3125, 1, 1, 46656, 37500, 34560, 34560, 37500, 46656, 1, 1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1, 1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 27, 3, 27, 1;
1, 256, 216, 216, 256, 1;
1, 3125, 80, 5, 80, 3125, 1;
1, 46656, 37500, 34560, 34560, 37500, 46656, 1;
1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1;
1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1;
-
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Numerator[B[n, k]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n,k): return numerator(B(n,k))
flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
A128434
Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721, 43046721, 6561, 43046721, 43046721, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 64, 8, 64, 1;
1, 625, 625, 625, 625, 1;
1, 7776 243, 16, 243, 7776, 1;
1, 117649, 117649, 117649, 117649, 117649, 117649, 1;
1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1;
-
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Denominator[B[n, k]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n,k): return denominator(B(n,k))
flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
A302583
a(n) = ((n + 1)^n - (n - 1)^n)/2.
Original entry on oeis.org
0, 1, 4, 28, 272, 3376, 51012, 908608, 18640960, 432891136, 11225320100, 321504185344, 10079828372880, 343360783937536, 12627774819845668, 498676704524517376, 21046391759976988928, 945381827279671853056, 45032132922921758270916, 2267322327322331161821184
Offset: 0
Cf.
A000169,
A065440,
A007778,
A062024,
A115416,
A274278,
A293022,
A302584,
A302585,
A302586,
A302587.
-
Table[((n + 1)^n - (n - 1)^n)/2, {n, 0, 19}]
nmax = 19; CoefficientList[Series[(x^2 - LambertW[-x]^2)/(2 x LambertW[-x] (1 + LambertW[-x])), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! SeriesCoefficient[Exp[n x] Sinh[x], {x, 0, n}], {n, 0, 19}]
Comments