A060071 Duplicate of A037205.
0, 1, 8, 63, 624, 7775, 117648, 2097151, 43046720, 999999999, 25937424600
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(10)=111111111; i.e., just nine 1's (converted from base 10 to decimal).
[0] cat [ (n^(n-1) -1)/(n-1) : n in [2..25]]; // G. C. Greubel, Aug 15 2022
Join[{0},Array[(#^(#-1)-1)/(#-1)&,20,2]] (* Harvey P. Dale, Jun 04 2013 *)
a(n) = if (n==1, 0, (n^(n - 1) - 1)/(n - 1)); \\ Harry J. Smith, Jul 01 2009
[0]+[(n^(n-1) -1)/(n-1) for n in (2..25)] # G. C. Greubel, Aug 15 2022
a(10) = 999999999/81 = 111111111/9 = 12345679.
Table[(n^(n - 1) - 1)/(n - 1)^2, {n, 2, 20}] (* Michael De Vlieger, Oct 28 2021 *)
a(n) = { (n^(n - 1) - 1)/(n - 1)^2 } \\ Harry J. Smith, Jul 01 2009
[n^n - n : n in [0..20]]; // Vincenzo Librandi, Sep 01 2011
Table[n^n-n, {n,25}] (* Vladimir Joseph Stephan Orlovsky, Dec 28 2010 *)
Table[(n-1)^n-1,{n,0,30}] (* Alexander Adamchuk, Nov 13 2006 *)
The array begins: k = 1 2 3 4 5 6 7 8 9 10 ... ---------------------------------------------------------- n=1: 0 0 0 0 0 0 0 0 0 0 ... n=2: 1 1 8 5 11 0 29 0 0 0 ... n=3: 2 8 2 0 22 1512 0 0 0 0 ... n=4: 3 3 63 3 0 0 0 0 ? 0 ... n=5: 4 24 0 624 4 0 0 0 0 0 ... n=6: 5 5 5 125 7775 5 0 0 0 0 ... n=7: 6 48 342 0 ? 7^6-1 6 0 0 0 ... n=8: 7 7 0 7 ? 0 8^7-1 7 0 0 ... n=9: 8 80 8 6560 0 0 0 9^8-1 8 0 ... n=10 9 9 999 4905 9 ? ? 0 10^9-1 9 ... ... For example, T(2,5) = 11, since the presentation <a,b,c,d,e | ab=c, bc=d, cd=e, de=a, ea=b> defines the cyclic group of order 11. This example is due to John Conway. This table is based on those in Johnson (1976) and Thomas (1989), supplemented by values from Chalk (1998). We have ignored the n=1 row when reading the table by antidiagonals.
4357 is in the sequence because (4358^4357-1)/4357^2 is prime.
Select[Table[((n+1)^n-1)/n^2,{n,500}],PrimeQ] (* Harvey P. Dale, Apr 30 2011 *)
A128466(n)=A060073(A127837(n)+1) /* see there. --- or: */ forprime(p=1,10^5,if(ispseudoprime(n=((p+1)^p-1)/p^2),print1(n,", "))); \\ M. F. Hasler, May 22 2007
8 is in this sequence because (3^3 - 3)/3 = 8.
[(&+[((j+1)^j -1)/j: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Aug 16 2022
Accumulate[Table[((i+1)^i-1)/i,{i,20}]] (* Harvey P. Dale, Jul 08 2017 *)
[sum(((j+1)^j -1)/j for j in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 16 2022
Comments