cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A060071 Duplicate of A037205.

Original entry on oeis.org

0, 1, 8, 63, 624, 7775, 117648, 2097151, 43046720, 999999999, 25937424600
Offset: 1

Views

Author

Henry Bottomley, Feb 21 2001

Keywords

A060072 a(n) = (n^(n-1) - 1)/(n-1) for n>1, a(1) = 0.

Original entry on oeis.org

0, 1, 4, 21, 156, 1555, 19608, 299593, 5380840, 111111111, 2593742460, 67546215517, 1941507093540, 61054982558011, 2085209001813616, 76861433640456465, 3041324492229179280, 128583032925805678351, 5784852794328402307380, 275941052631578947368421
Offset: 1

Views

Author

Henry Bottomley, Feb 21 2001

Keywords

Comments

(n-1)-digit repunits in base n written in decimal.

Examples

			a(10)=111111111; i.e., just nine 1's (converted from base 10 to decimal).
		

Crossrefs

Cf. other sequences of generalized repunits, such as A053696, A055129, A031973, A125598, A173468, A023037, A119598, A085104, and A162861.

Programs

  • Magma
    [0] cat [ (n^(n-1) -1)/(n-1) : n in [2..25]]; // G. C. Greubel, Aug 15 2022
    
  • Mathematica
    Join[{0},Array[(#^(#-1)-1)/(#-1)&,20,2]] (* Harvey P. Dale, Jun 04 2013 *)
  • PARI
    a(n) = if (n==1, 0, (n^(n - 1) - 1)/(n - 1)); \\ Harry J. Smith, Jul 01 2009
    
  • SageMath
    [0]+[(n^(n-1) -1)/(n-1) for n in (2..25)] # G. C. Greubel, Aug 15 2022

Formula

a(n+1) = Sum_{k=1..n} n^(k-1)*C(n, k). - Olivier Gérard, Jun 26 2001 [Corrected by Mathew Englander, Dec 15 2020]
a(n) = Sum_{j=2..n} n^(n-j). - Zerinvary Lajos, Sep 11 2006
a(n+1) = A125118(n,n). - Reinhard Zumkeller, Nov 21 2006
a(n) = Integral_{x=1/n..1} 1/x^n dx. - Francesco Daddi, Aug 01 2011
a(n) = A037205(n-1)/(n-1) = A060073(n)*(n-1) = A023037(n) - A000169(n).
a(n) = [x^n] x^2/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017
a(n) = 1 + A228275(n, n-2) for n >= 2. - Mathew Englander, Dec 14 2020

Extensions

Name edited by Michel Marcus, Dec 14 2020

A060073 a(n) = (n^(n-1)-1)/(n-1)^2.

Original entry on oeis.org

1, 2, 7, 39, 311, 3268, 42799, 672605, 12345679, 259374246, 6140565047, 161792257795, 4696537119847, 148943500129544, 5124095576030431, 190082780764323705, 7563707819165039903, 321380710796022350410, 14523213296398891966759, 695546073617378871592991
Offset: 2

Views

Author

Henry Bottomley, Feb 21 2001

Keywords

Comments

Written in base n, a(n) has n-2 digits and looks like 12345... except that the final digit is n-1 rather than n-2.
Note that 2^m-1 divides a(m+1) = ((m+1)^m-1)/m^2 if and only if m = 2^k-1 with gcd(k,m) = 1. Mersenne numbers M = 2^p-1 such that a(M+1)/(2^M-1) is prime are Mersenne primes 2^3-1 = 7 and 2^7-1 = 127. - Thomas Ordowski, Sep 19 2021

Examples

			a(10) = 999999999/81 = 111111111/9 = 12345679.
		

Crossrefs

Cf. A000142, A037205, A058128, A059522, A060072, A127837 (numbers p such that a(p+1) is prime).

Programs

  • Mathematica
    Table[(n^(n - 1) - 1)/(n - 1)^2, {n, 2, 20}] (* Michael De Vlieger, Oct 28 2021 *)
  • PARI
    a(n) = { (n^(n - 1) - 1)/(n - 1)^2 } \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = A037205(n-1)/(n-1)^2 = A060072(n)/(n-1) = A058128(n)/n = A059522(n)/A000142(n).

A061190 a(n) = n^n - n.

Original entry on oeis.org

1, 0, 2, 24, 252, 3120, 46650, 823536, 16777208, 387420480, 9999999990, 285311670600, 8916100448244, 302875106592240, 11112006825558002, 437893890380859360, 18446744073709551600, 827240261886336764160, 39346408075296537575406, 1978419655660313589123960
Offset: 0

Views

Author

Lawrence H. Shirley (LShirley(AT)towson.edu), May 30 2001

Keywords

Comments

Number of endofunctions on [n] such that no element has a preimage of cardinality n. - Alois P. Heinz, Jul 21 2014

Crossrefs

Main diagonal of A245405.

Programs

Formula

E.g.f.: 1/(1 + LambertW(-x)) - x*exp(x), where LambertW() is the Lambert W-function. - Ilya Gutkovskiy, Feb 08 2017
a(n) = n*A037205(n-1). - R. J. Mathar, Jul 02 2017

Extensions

a(0)=1 inserted by Alois P. Heinz, Jul 21 2014

A085606 a(n) = (n-1)^n - 1.

Original entry on oeis.org

0, -1, 0, 7, 80, 1023, 15624, 279935, 5764800, 134217727, 3486784400, 99999999999, 3138428376720, 106993205379071, 3937376385699288, 155568095557812223, 6568408355712890624, 295147905179352825855, 14063084452067724991008, 708235345355337676357631
Offset: 0

Views

Author

Lekraj Beedassy, Jul 07 2003

Keywords

Comments

Sequence relates to the "monkey and coconut problem"(A014293) giving the number of coconuts received by each of the n sailors from the ultimate equitable distribution the next day.
From Alexander Adamchuk, Nov 13 2006: (Start)
4n^2 divides a(2n).
Odd prime p divides a(p-1).
8p^2 divides a(2p) for an odd prime p.
32p^4 divides a(2p^2) for an odd prime p.
64p^8 divides a(2p^4) for an odd prime p.
p^3 divides a(p^3+2) for prime p.
p divides a((p-1)/2) for prime p in A157437.
p^2 divides a((p-1)/2) for prime p = {5,127,607}. (End)

Crossrefs

Programs

Formula

a(n) = A065440(n) - 1.

Extensions

More terms from Ray Chandler, Nov 10 2003

A202624 Array read by antidiagonals: T(n,k) = order of Fibonacci group F(n,k), writing 0 if the group is infinite, for n >= 2, k >= 1.

Original entry on oeis.org

1, 2, 1, 3, 8, 8, 4, 3, 2, 5, 5, 24, 63, 0, 11, 6, 5, 0, 3, 22, 0, 7, 48, 5, 624, 0, 1512, 29, 8, 7, 342, 125, 4, 0, 0, 0, 9, 80, 0, 0, 7775, 0, 0, 0, 0, 10, 9, 8, 7
Offset: 2

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Comments

The Fibonacci group F(r,n) has presentation , where there are n relations, obtained from the first relation by applying the permutation (1,2,,n) to the subscripts and reducing subscripts mod n. Then T(n,k) = |F(n,k)|.
T(7,5) was not known in 1998 (Chalk).

Examples

			The array begins:
k =  1  2   3    4    5     6     7     8      9    10 ...
----------------------------------------------------------
n=1: 0  0   0    0    0     0     0     0      0     0 ...
n=2: 1  1   8    5   11     0    29     0      0     0 ...
n=3: 2  8   2    0   22  1512     0     0      0     0 ...
n=4: 3  3  63    3    0     0     0     0      ?     0 ...
n=5: 4 24   0  624    4     0     0     0      0     0 ...
n=6: 5  5   5  125 7775     5     0     0      0     0 ...
n=7: 6 48 342    0    ? 7^6-1     6     0      0     0 ...
n=8: 7  7   0    7    ?     0 8^7-1     7      0     0 ...
n=9: 8 80   8 6560    0     0     0 9^8-1      8     0 ...
n=10 9  9 999 4905    9     ?     ?     0 10^9-1     9 ...
...
For example, T(2,5) = 11, since the presentation <a,b,c,d,e | ab=c, bc=d, cd=e, de=a, ea=b> defines the cyclic group of order 11. This example is due to John Conway.
This table is based on those in Johnson (1976) and Thomas (1989), supplemented by values from Chalk (1998). We have ignored the n=1 row when reading the table by antidiagonals.
		

References

  • Campbell, Colin M.; and Gill, David M. On the infiniteness of the Fibonacci group F(5,7). Algebra Colloq. 3 (1996), no. 3, 283-284.
  • D. L. Johnson, Presentation of Groups, Cambridge, 1976, see table p. 182.
  • Mednykh, Alexander; and Vesnin, Andrei; On the Fibonacci groups, the Turk's head links and hyperbolic 3-manifolds, in Groups-Korea '94 (Pusan), 231-239, de Gruyter, Berlin, 1995.
  • Nikolova, Daniela B., The Fibonacci groups - four years later, in Semigroups (Kunming, 1995), 251-255, Springer, Singapore, 1998.
  • Nikolova, D. B.; and Robertson, E. F., One more infinite Fibonacci group. C. R. Acad. Bulgare Sci. 46 (1993), no. 3, 13-15.
  • Thomas, Richard M., The Fibonacci groups revisited, in Groups - St. Andrews 1989, Vol. 2, 445-454, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991.

Crossrefs

Cf. A037205 (a diagonal), A065530, A202625, A202626, A202627 (columns).

A127837 Numbers k such that ((k+1)^k-1)/k^2 is a prime.

Original entry on oeis.org

2, 3, 5, 17, 4357
Offset: 1

Views

Author

Keywords

Comments

All terms are primes. Corresponding primes of the form ((k+1)^k-1)/k^2 are listed in A128466 = 2, 7, 311, 7563707819165039903, ... .
It seems that if p is in the sequence then the first three numbers k such that k^2 divides (p+1)^k-1 are: 1, p & ((p+1)^p-1)/p. 2 is in the sequence and the first three terms of A127103 are : 1, 2 & ((2+1)^2-1)/2; 3 is in the sequence and the first three terms of A127104 are : 1, 3 & ((3+1)^3-1)/3; 5 is in the sequence and the first three terms of A127106 are : 1, 5 & ((5+1)^5-1)/5.
No other terms below 20000. - Max Alekseyev, Apr 25 2007

Examples

			4357 is in the sequence because (4358^4357-1)/4357^2 is prime.
		

Crossrefs

A128466 Primes of the form ((k+1)^k - 1)/k^2 = A060073(k+1).

Original entry on oeis.org

2, 7, 311, 7563707819165039903
Offset: 1

Views

Author

Alexander Adamchuk, Mar 09 2007

Keywords

Comments

Corresponding numbers k are listed in A127837.
Terms are the primes in A060073.
Next term has 15850 = 1 + floor((4357*log(4358) - 2*log(4357))/log(10)) digits and is too large to include. - M. F. Hasler, May 22 2007

Crossrefs

Programs

  • Mathematica
    Select[Table[((n+1)^n-1)/n^2,{n,500}],PrimeQ]  (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    A128466(n)=A060073(A127837(n)+1) /* see there. --- or: */ forprime(p=1,10^5,if(ispseudoprime(n=((p+1)^p-1)/p^2),print1(n,", "))); \\ M. F. Hasler, May 22 2007

Formula

a(n) = ((A127837(n) + 1)^A127837(n) - 1) / A127837(n)^2.

A246445 Numbers of the form (x^y - x)/y for positive x,y.

Original entry on oeis.org

0, 1, 2, 3, 6, 8, 10, 15, 18, 20, 21, 28, 36, 40, 45, 48, 55, 63, 66, 70, 78, 91, 105, 112, 120, 121, 136, 153, 155, 168, 171, 186, 190, 204, 210, 231, 240, 253, 276, 300, 312, 325, 330, 351, 378, 406, 435, 440, 465, 496, 528, 561, 572, 595, 624, 630, 666, 682, 703
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 07 2014

Keywords

Examples

			8 is in this sequence because (3^3 - 3)/3 = 8.
		

Crossrefs

Subsequences of a(n): A000217, A007290, A037205, A208536, A208537.

A175151 a(n) = Sum_{i=1..n} ((i+1)^i - 1)/i.

Original entry on oeis.org

1, 5, 26, 182, 1737, 21345, 320938, 5701778, 116812889, 2710555349, 70256770866, 2011763864406, 63066746422417, 2148275748236033, 79009709388692498, 3120334201617871778, 131703367127423550129, 5916556161455825857509, 281857608793034773225930
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 26 2010

Keywords

Crossrefs

Programs

  • Magma
    [(&+[((j+1)^j -1)/j: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Aug 16 2022
    
  • Mathematica
    Accumulate[Table[((i+1)^i-1)/i,{i,20}]] (* Harvey P. Dale, Jul 08 2017 *)
  • SageMath
    [sum(((j+1)^j -1)/j for j in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 16 2022

Formula

a(n) = Sum_{i=1..n+1} A060072(i). - R. J. Mathar, Mar 05 2010
a(n) = Sum_{j=1..n} (j+1)^j/j - H(n), where H(n) is the n-th harmonic number. - G. C. Greubel, Aug 16 2022

Extensions

More terms from R. J. Mathar, Mar 05 2010
Showing 1-10 of 11 results. Next