A128466
Primes of the form ((k+1)^k - 1)/k^2 = A060073(k+1).
Original entry on oeis.org
2, 7, 311, 7563707819165039903
Offset: 1
-
Select[Table[((n+1)^n-1)/n^2,{n,500}],PrimeQ] (* Harvey P. Dale, Apr 30 2011 *)
-
A128466(n)=A060073(A127837(n)+1) /* see there. --- or: */ forprime(p=1,10^5,if(ispseudoprime(n=((p+1)^p-1)/p^2),print1(n,", "))); \\ M. F. Hasler, May 22 2007
A023811
Largest metadrome (number with digits in strict ascending order) in base n.
Original entry on oeis.org
0, 1, 5, 27, 194, 1865, 22875, 342391, 6053444, 123456789, 2853116705, 73686780563, 2103299351334, 65751519677857, 2234152501943159, 81985529216486895, 3231407272993502984, 136146740744970718253, 6106233505124424657789, 290464265927977839335179
Offset: 1
a(5) = 1234[5] (in base 5) = 1*5^3 + 2*5^2 + 3*5 + 4 = 125 + 50 + 15 + 4 = 194.
a(10) = 123456789 (in base 10).
-
a023811 n = foldl (\val dig -> val * n + dig) 0 [0 .. n - 1]
-- Reinhard Zumkeller, Aug 29 2014
-
[0] cat [(n^n-n^2+n-1)/(n-1)^2: n in [2..20]]; // Vincenzo Librandi, May 22 2012
-
0, seq((n^n-n^2+n-1)/(n-1)^2, n=2..100); # Robert Israel, Dec 13 2015
-
Table[Total[(#1 n^#2) & @@@ Transpose@ {Range[n - 1], Reverse@ (Range[n - 1] - 1)}], {n, 20}] (* Michael De Vlieger, Jul 24 2015 *)
Table[Sum[(b - k)*b^(k - 1), {k, b - 1}], {b, 30}] (* Clark Kimberling, Aug 22 2015 *)
Table[FromDigits[Range[0, n - 1], n], {n, 20}] (* L. Edson Jeffery, Dec 13 2015 *)
-
{for(i=1,18,cuo=0; for(j=1,i-1,cuo=cuo+j*i^(i-j-1)); print1(cuo,", "))} \\\ Douglas Latimer, May 16 2012
-
A023811(n)=if(n>1,(n^n-n^2)\(n-1)^2+1) \\ M. F. Hasler, Jan 22 2013
-
def a(n): return (n**n - n**2 + n - 1)//((n - 1)**2) if n > 1 else 0
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Apr 24 2023
A060072
a(n) = (n^(n-1) - 1)/(n-1) for n>1, a(1) = 0.
Original entry on oeis.org
0, 1, 4, 21, 156, 1555, 19608, 299593, 5380840, 111111111, 2593742460, 67546215517, 1941507093540, 61054982558011, 2085209001813616, 76861433640456465, 3041324492229179280, 128583032925805678351, 5784852794328402307380, 275941052631578947368421
Offset: 1
a(10)=111111111; i.e., just nine 1's (converted from base 10 to decimal).
-
[0] cat [ (n^(n-1) -1)/(n-1) : n in [2..25]]; // G. C. Greubel, Aug 15 2022
-
Join[{0},Array[(#^(#-1)-1)/(#-1)&,20,2]] (* Harvey P. Dale, Jun 04 2013 *)
-
a(n) = if (n==1, 0, (n^(n - 1) - 1)/(n - 1)); \\ Harry J. Smith, Jul 01 2009
-
[0]+[(n^(n-1) -1)/(n-1) for n in (2..25)] # G. C. Greubel, Aug 15 2022
A198410
a(n) = ((3^(n-1) + 1)^3 -1)/3^n.
Original entry on oeis.org
7, 37, 271, 2269, 19927, 177877, 1596511, 14355469, 129159847, 1162320517, 10460530351, 94143710269, 847290203767, 7625602267957, 68630391713791, 617673439330669, 5559060695695687, 50031545486420197, 450283907053258831, 4052555156505760669, 36472996387631139607
Offset: 2
a(2) = ((3 + 1)^3 - 1)/3^2 = 63/9 = 7.
-
I:=[7,37,271]; [n le 3 select I[n] else 13*Self(n-1)-39*Self(n-2)+27*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 25 2014
-
A198410 := proc(n)
(3^(n-1)+1)^3 ;
(%-1)/3^n ;
end proc:
seq(A198410(n), n=2..20) ; # R. J. Mathar, Oct 25 2011
-
Table[((3^(n - 1) + 1)^3 - 1)/3^n, {n, 2, 20}] (* Wesley Ivan Hurt, Mar 24 2014 *)
CoefficientList[Series[(7 - 54 x + 63 x^2)/((1 - x) (3 x - 1) (9 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 25 2014 *)
LinearRecurrence[{13,-39,27},{7,37,271},30] (* Harvey P. Dale, Mar 04 2015 *)
-
a(n)=9^n/27+3^n/3+1 \\ Charles R Greathouse IV, Jun 11 2015
A037205
a(n) = (n+1)^n - 1.
Original entry on oeis.org
0, 1, 8, 63, 624, 7775, 117648, 2097151, 43046720, 999999999, 25937424600, 743008370687, 23298085122480, 793714773254143, 29192926025390624, 1152921504606846975, 48661191875666868480, 2185911559738696531967, 104127350297911241532840, 5242879999999999999999999, 278218429446951548637196400, 15519448971100888972574851071
Offset: 0
- D. L. Johnson, Presentation of Groups, Cambridge, 1976, p. 182.
- Richard M. Thomas, The Fibonacci groups revisited, in Groups - St. Andrews 1989, Vol. 2, 445-454, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991.
-
[(n + 1)^n - 1: n in [0..25]]; // G. C. Greubel, Nov 10 2017
-
Table[(n + 1)^n - 1, {n, 0, 21}] (* or *)
Table[If[n < 1, Length@ #, FromDigits[#, n + 1]] &@ ConstantArray[n, n], {n, 0, 21}] (* Michael De Vlieger, Nov 30 2016 *)
-
for(n=0,25, print1((n + 1)^n - 1, ", ")) \\ G. C. Greubel, Nov 10 2017
A081215
a(n) = (n^(n+1)+(-1)^n)/(n+1)^2.
Original entry on oeis.org
1, 0, 1, 5, 41, 434, 5713, 90075, 1657009, 34867844, 826446281, 21794641505, 633095889817, 20088655029078, 691413758034721, 25657845139503479, 1021273028302258913, 43404581642184336392, 1961870762757168078553
Offset: 0
A127837
Numbers k such that ((k+1)^k-1)/k^2 is a prime.
Original entry on oeis.org
2, 3, 5, 17, 4357
Offset: 1
4357 is in the sequence because (4358^4357-1)/4357^2 is prime.
A070189
a(n) = 12345679*n.
Original entry on oeis.org
0, 12345679, 24691358, 37037037, 49382716, 61728395, 74074074, 86419753, 98765432, 111111111, 123456790, 135802469, 148148148, 160493827, 172839506, 185185185, 197530864, 209876543, 222222222, 234567901, 246913580, 259259259, 271604938, 283950617, 296296296, 308641975
Offset: 0
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 12345679 at p. 188.
-
Table[12345679*n,{n,0,30}] (* or *) LinearRecurrence[{2,-1},{0,12345679},30] (* Harvey P. Dale, Oct 16 2015 *)
-
a(n)=12345679*n \\ Charles R Greathouse IV, Jan 09 2012
-
concat(0, Vec(12345679*x/(1-x)^2 + O(x^26))) \\ Elmo R. Oliveira, Jun 26 2025
A137665
Quotients ((p+1)^p - 1)/p^2 for p = prime(n).
Original entry on oeis.org
2, 7, 311, 42799, 6140565047, 4696537119847, 7563707819165039903, 14523213296398891966759, 105051652240885643072548950287, 8160568057655529131985731272294887039239, 47525417447024678661670292427038339608998847, 20681861558186805237407813095538883147812221153173966103
Offset: 1
-
Table[ ((Prime[n] + 1)^Prime[n] - 1)/Prime[n]^2, {n,1,15} ]
-
a(n) = my(p=prime(n)); polcyclo(p,p+1)/p \\ Hugo Pfoertner, Jul 21 2024
A175771
a(n) = ((n^2 + 1)^n - 1)/n^3.
Original entry on oeis.org
1, 3, 37, 1305, 95051, 11878363, 2277696793, 622353150177, 229930796172439, 110462212541120451, 66954547910007962117, 49988751334503886046233, 45082285083777592171142467, 48321795074001873489007405947
Offset: 1
a(3) = ((3^2 + 1)^3 - 1)/3^3 = 999/27 = 37.
-
[((n^2 + 1)^n - 1)/n^3 : n in [1..20]]; // Vincenzo Librandi, Sep 01 2011
-
seq(((n^2 + 1)^n - 1)/n^3,n=1..10) ;
-
Table[((n^2 + 1)^n - 1)/n^3, {n,1,20}] (* G. C. Greubel, Nov 11 2018 *)
-
vector(20, n, ((n^2 + 1)^n - 1)/n^3) \\ G. C. Greubel, Nov 11 2018
Showing 1-10 of 11 results.
Comments