cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 180 results. Next

A059419 Triangle T(n,k) (1 <= k <= n) of tangent numbers, read by rows: T(n,k) = coefficient of x^n/n! in expansion of (tan x)^k/k!.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 16, 0, 20, 0, 1, 0, 136, 0, 40, 0, 1, 272, 0, 616, 0, 70, 0, 1, 0, 3968, 0, 2016, 0, 112, 0, 1, 7936, 0, 28160, 0, 5376, 0, 168, 0, 1, 0, 176896, 0, 135680, 0, 12432, 0, 240, 0, 1, 353792, 0, 1805056, 0, 508640, 0, 25872, 0, 330, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Comments

(tan(x))^k = sum{n>0, If n+k is odd, T(n,k) = 0 = n!/k!*(-1)^((n+k)/2)*sum{j=k..n} (j!/n!) * Stirling2(n,j) * 2^(n-j) * (-1)^(n+j-k) * binomial(j-1,k-1)*x^n}. - Vladimir Kruchinin, Aug 13 2012
Also the Bell transform of A009006(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			     1;
     0,     1;
     2,     0,     1;
     0,     8,     0,    1;
    16,     0,    20,    0,    1;
     0,   136,     0,   40,    0,   1;
   272,     0,   616,    0,   70,   0,   1;
     0,  3968,     0, 2016,    0, 112,   0,  1;
  7936,     0, 28160,    0, 5376,   0, 168,  0,  1;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.

Crossrefs

Diagonals give A000182, A024283, A059420 (interspersed with 0's), also A007290, A059421. Row sums give A006229. Essentially the same triangle as A008308.
A111593 (signed triangle with extra column k=0 and row n=0).

Programs

  • Maple
    A059419 := proc(n,k) option remember; if n = k then 1; elif k <0 or k > n then 0; else  procname(n-1,k-1)+k*(k+1)*procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
  • Mathematica
    d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
    rows = 12;
    t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,n!*polcoeff(tan(x+x*O(x^n))^k/k!,n))
    
  • Sage
    def A059419_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*(k+2)*M[n-1,k+1]
        return M
    A059419_triangle(9) # Peter Luschny, Sep 19 2012

Formula

T(n+1, k) = T(n, k-1) + k*(k+1)*T(n, k+1), T(n, n) = 1.
If n+k is odd, T(n,k) = 0 = 1/k!*(-1)^((n+k)/2)*Sum_{j=k..n} j!* Stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1). - Vladimir Kruchinin, Feb 10 2011
E.g.f.: exp(t*tan(x))-1 = t*x + t^2*x^2/2! + (2*t + t^3)*x^3/3! + ....
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x^2)*d/dx. - Peter Bala, Nov 25 2011
The o.g.f.s of the diagonals of this triangle are rational functions obtained from the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + .... For example, the fourth subdiagonal has o.g.f. 8*t*(2+3*t)/(1-t)^7 = 16*t + 136*t^2 + 616*t^3 + .... - Peter Bala, Apr 23 2012
With offset 0 and initial column of zeros, except for T(0,0) = 1, e.g.f.(t,x) = e^(x*tan(t)) = e^(P(.,x)t) ; the lowering operator, L = atan(d/dx) ; and the raising operator, R = x [1 +(d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x). The sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001

A006229 Expansion of e.g.f. exp( tan x ).

Original entry on oeis.org

1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059419 and unsigned A111593.

Programs

  • Julia
    function A006229_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 2:n-1 T[n,k] = T[n-1,k-1] + k*(k-1)*T[n-1,k+1] end
            S[n] = sum(T[n,k] for k in 2:n)
        end
    S end
    println(A006229_list(24)) # Peter Luschny, Apr 27 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Tan[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 04 2011 *)
  • Maxima
    a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(tan(x)).
a(n) = sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: 1 + tan(x)/T(0), where T(k) = 4*k+1 - tan(x)/(2 + tan(x)/(4*k+3 - tan(x)/(2 + tan(x)/T(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) = Sum_{i=0..(n-1)/2} binomial(n-1,2*i)*z(i+1)*a(n-2*i-1), a(0)=1, where z(n) is tangent (or "zag") numbers (A000182). - Vladimir Kruchinin, Mar 04 2015 [corrected by Jason Yuen, Dec 29 2024]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001

A085058 a(n) = A001511(n+1) + 1.

Original entry on oeis.org

2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2
Offset: 0

Views

Author

N. J. A. Sloane, Aug 11 2003

Keywords

Comments

Number of divisors of 2n+2 of the form 2^k. - Giovanni Teofilatto, Jul 25 2007
Number of steps for iteration of map x -> (3/2)*ceiling(x) to reach an integer when started at 2*n+1.
Also number of steps for iteration of map x -> (3/2)*floor(x) to reach an integer when started at 2*n+3. - Benoit Cloitre, Sep 27 2003
The first time that a(n) = e+1 is when n is of the form 2^e - 1. - Robert G. Wilson v, Sep 28 2003
Let 2^k(n) = largest power of 2 dividing tangent number A000182(n). Then a(n-1) = 2*n - k(n). - Yasutoshi Kohmoto, Dec 23 2006
a(n) is the number of integers generated by b(i+1) = (3+2n)*(b(i) + b(i-1))/2, following these two initial values, b(0) = b(1) = 1. Thereafter only non-integers are generated. - Richard R. Forberg, Nov 09 2014
a(n) is the 2-adic valuation of 4*n+4, which is equal to the number of trailing 1-bits of 4*n+3 in binary. - Ruud H.G. van Tol, Sep 11 2023

Crossrefs

Programs

  • Magma
    [Valuation(n+1, 2)+2: n in [0..100]]; // Vincenzo Librandi, Jan 16 2016
    
  • Maple
    f := x->(3/2)*ceil(x); g := proc(n) local t1,c; global f; t1 := f(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := f(t1); od; RETURN([c,t1]); end;
    a := n ->  A001511(n+1) + 1: A001511 := n -> padic[ordp](2*n, 2): seq(a(n), n=0..104); # Johannes W. Meijer, Dec 22 2012
  • Mathematica
    g = 3 Ceiling[ # ]/2 &; f[n_?OddQ] := Length @ NestWhileList[ g, g[n], !IntegerQ[ # ] & ]; Table[ f[n], {n, 1, 210, 2}]
  • PARI
    A085058(n)=if(n<0,0,c=2*n+7/2; x=0; while(frac(c)>0,c=3/2*floor(c); x++); x) \\ Benoit Cloitre, Sep 27 2003
    
  • PARI
    A085058(n)=if(n<0,0,c=(2*n+1)*3/2; x=1; while(frac(c)>0,c=3/2*ceil(c); x++); x) \\ Benoit Cloitre, Sep 27 2003
    
  • PARI
    a(n) = valuation(n+1,2)+2; \\ Michel Marcus, Jan 15 2016
    
  • Python
    def A085058(n): return (~(n+1) & n).bit_length()+2 # Chai Wah Wu, Apr 14 2023

Formula

a(n) = A007814(3^(n+1) - (-1)^(n+1)) = A007814(A105723(n+1)). - Reinhard Zumkeller, Apr 18 2005
a(n) = A001511(n+1) + 1 = A001511(2*n+2). - Ray Chandler, Jul 29 2007
a(n) = A007814(5^(n+1) - 1). - Ivan Neretin, Jan 15 2016
a(n) = A007814(4*(n+1)) = A007814(n+1) + 2. - Ruud H.G. van Tol, Sep 11 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. - Amiram Eldar, Sep 13 2024

Extensions

Edited by Franklin T. Adams-Watters, Dec 09 2013

A101921 a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.

Original entry on oeis.org

0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, 33, 36, 36, 40, 41, 44, 43, 48, 49, 52, 52, 56, 57, 60, 57, 64, 65, 68, 68, 72, 73, 76, 75, 80, 81, 84, 84, 88, 89, 92, 90, 96, 97, 100, 100, 104, 105, 108, 107, 112, 113, 116, 116, 120, 121, 124, 120, 128
Offset: 1

Views

Author

Ralf Stephan, Dec 21 2004

Keywords

Comments

Exponent of 2 in tangent numbers A000182.
Also, exponent of 2 in the sequences A008775, A009670, A009764, A009798, A012227, A024236, A024277, A024299, A052510.
Also, exponent of 2 in 4^(n-1)/n. [David Brink, Aug 08 2013]

Examples

			G.f. = x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 9*x^6 + 12*x^7 + 11*x^8 + 16*x^9 + 17*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= If[n<1, 0, 2n -2 - IntegerExponent[n, 2]]; (* Michael Somos, Mar 02 2014 *)
  • PARI
    a(n)=valuation(4^(n-1)/n,2); \\ Joerg Arndt, Aug 13 2013
    
  • Python
    def A101921(n): return (n-1<<1)-(~n & n-1).bit_length() # Chai Wah Wu, Apr 14 2023
  • Sage
    [2*n-2 -valuation(n,2) for n in (1..100)] # G. C. Greubel, Nov 29 2021
    

Formula

a(n) = 2n - 2 - A007814(n).
a(n) = A007814(A000182(n)).
G.f.: Sum_{k>=0} t^2*(1+4*t+t^2)/(1-t^2)^2 where t=x^2^k.

A119467 A masked Pascal triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 1, 0, 66, 0, 495, 0, 924
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Row sums are A011782. Diagonal sums are F(n+1)*(1+(-1)^n)/2 (aerated version of A001519). Product by Pascal's triangle A007318 is A119468. Schur product of (1/(1-x),x/(1-x)) and (1/(1-x^2),x).
Exponential Riordan array (cosh(x),x). Inverse is (sech(x),x) or A119879. - Paul Barry, May 26 2006
Rows give coefficients of polynomials p_n(x) = Sum_{k=0..n} (k+1 mod 2)*binomial(n,k)*x^(n-k) having e.g.f. exp(x*t)*cosh(t)= 1*(t^0/0!) + x*(t^1/1!) + (1+x^2)*(t^2/2!) + ... - Peter Luschny, Jul 14 2009
Inverse of the coefficient matrix of the Swiss-Knife polynomials in ascending order of x^i (reversed and aerated rows of A153641). - Peter Luschny, Jul 16 2012
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*... is equal to A136630 but with the first row and column omitted. - Peter Bala, Jul 28 2014
The row polynomials SKv(n,x) = [(x+1)^n + (x-1)^n]/2 , with e.g.f. cosh(t)*exp(xt), are the umbral compositional inverses of the row polynomials of A119879 (basically the Swiss Knife polynomials SK(n,x) of A153641); i.e., umbrally SKv(n,SK(.,x)) = x^n = SK(n,SKv(.,x)). Therefore, this entry's matrix and A119879 are an inverse pair. Both sequences of polynomials are Appell sequences, i.e., d/dx P(n,x) = n * P(n-1,x) and (P(.,x)+y)^n = P(n,x+y). In particular, (SKv(.,0)+x)^n = SKv(n,x), reflecting that the first column has the e.g.f. cosh(t). The raising operator is R = x + tanh(d/dx); i.e., R SKv(n,x) = SKv(n+1,x). The coefficients of this operator are basically the signed and aerated zag numbers A000182, which can be expressed as normalized Bernoulli numbers. The triangle is formed by multiplying the n-th diagonal of the lower triangular Pascal matrix by the Taylor series coefficient a(n) of cosh(x). More relations for this type of triangle and its inverse are given by the formalism of A133314. - Tom Copeland, Sep 05 2015
The signed version of this matrix has the e.g.f. cos(t) e^{xt}, generating Appell polynomials that have only real, simple zeros and whose extrema are maxima above the x-axis and minima below and situated above and below the zeros of the next lower degree polynomial. The bivariate versions appear on p. 27 of Dimitrov and Rusev in conditions for entire functions that are cosine transforms of a class of functions to have only real zeros. - Tom Copeland, May 21 2020
The n-th row of the triangle is obtained by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probabilities of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms of the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k-1) as the (2k-1)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k-1). - Luca Onnis, Oct 29 2023

Examples

			Triangle begins
  1,
  0, 1,
  1, 0,  1,
  0, 3,  0,  1,
  1, 0,  6,  0,   1,
  0, 5,  0, 10,   0,   1,
  1, 0, 15,  0,  15,   0,   1,
  0, 7,  0, 35,   0,  21,   0,  1,
  1, 0, 28,  0,  70,   0,  28,  0,  1,
  0, 9,  0, 84,   0, 126,   0, 36,  0, 1,
  1, 0, 45,  0, 210,   0, 210,  0, 45, 0, 1
p[0](x) = 1
p[1](x) = x
p[2](x) = 1 + x^2
p[3](x) = 3*x + x^3
p[4](x) = 1 + 6*x^2 + x^4
p[5](x) = 5*x + 10*x^3 + x^5
Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1        \/1        \/1        \      /1         \
|0 1      ||0 1      ||0 1      |      |0 1       |
|1 0 1    ||0 0 1    ||0 0 1    |... = |1 0  1    |
|0 3 0 1  ||0 1 0 1  ||0 0 0 1  |      |0 4  0 1  |
|1 0 6 0 1||0 0 3 0 1||0 0 1 0 1|      |1 0 10 0 1|
|...      ||...      ||...      |      |...       |
- _Peter Bala_, Jul 28 2014
		

References

  • Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.

Crossrefs

From Peter Luschny, Jul 14 2009: (Start)
p[n](k), n=0,1,...
k= 0: 1, 0, 1, 0, 1, 0, ... A128174
k= 1: 1, 1, 2, 4, 8, 16, ... A011782
k= 2: 1, 2, 5, 14, 41, 122, ... A007051
k= 3: 1, 3, 10, 36, 136, ... A007582
k= 4: 1, 4, 17, 76, 353, ... A081186
k= 5: 1, 5, 26, 140, 776, ... A081187
k= 6: 1, 6, 37, 234, 1513, ... A081188
k= 7: 1, 7, 50, 364, 2696, ... A081189
k= 8: 1, 8, 65, 536, 4481, ... A081190
k= 9: 1, 9, 82, 756, 7048, ... A060531
k=10: 1, 10, 101, 1030, ... A081192
p[n](k), k=0,1,...
p[0]: 1,1,1,1,1,1, ....... A000012
p[1]: 0,1,2,3,4,5, ....... A001477
p[2]: 1,2,5,10,17,26, .... A002522
p[3]: 0,4,14,36,76,140, .. A079908 (End)

Programs

  • Haskell
    a119467 n k = a119467_tabl !! n !! k
    a119467_row n = a119467_tabl !! n
    a119467_tabl = map (map (flip div 2)) $
                   zipWith (zipWith (+)) a007318_tabl a130595_tabl
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Magma
    /* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
  • Maple
    # Polynomials: p_n(x)
    p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
    add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
    # Coefficients: a(n)
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
  • Mathematica
    Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *)
    n = 15; "n-th row"
    mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
    mat[[1, 2]] = 1;
    mat[[n + 1, n]] = 1;
    For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
    For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
    mat // MatrixForm;
    P2 = Dot[mat, mat];
    R1 = Simplify[
      Eigenvectors[Transpose[P2]][[1]]/
       Total[Eigenvectors[Transpose[P2]][[1]]]]
    R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
    odd = R2*2^(n - 1) (* _Luca Onnis *)
  • Sage
    @CachedFunction
    def A119467_poly(n):
        R = PolynomialRing(ZZ, 'x')
        x = R.gen()
        return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2))
    def A119467_row(n):
        return list(A119467_poly(n))
    for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
    

Formula

G.f.: (1-x*y)/(1-2*x*y-x^2+x^2*y^2);
T(n,k) = C(n,k)*(1+(-1)^(n-k))/2;
Column k has g.f. (1/(1-x^2))*(x/(1-x^2))^k*Sum_{j=0..k+1} binomial(k+1,j)*sin((j+1)*Pi/2)^2*x^j.
Column k has e.g.f. cosh(x)*x^k/k!. - Paul Barry, May 26 2006
Let Pascal's triangle, A007318 = P; then this triangle = (1/2) * (P + 1/P). Also A131047 = (1/2) * (P - 1/P). - Gary W. Adamson, Jun 12 2007
Equals A007318 - A131047 since the zeros of the triangle are masks for the terms of A131047. Thus A119467 + A131047 = Pascal's triangle. - Gary W. Adamson, Jun 12 2007
T(n,k) = (A007318(n,k) + A130595(n,k))/2, 0<=k<=n. - Reinhard Zumkeller, Mar 23 2014

Extensions

Edited by N. J. A. Sloane, Jul 14 2009

A089171 Numerators of series coefficients of 1/(1 + cosh(sqrt(x))).

Original entry on oeis.org

1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -56963745931, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441
Offset: 0

Views

Author

Wouter Meeussen, Dec 07 2003

Keywords

Comments

Unsigned version is equal to A002425 up to n=11, but differs beyond that point.
Unsigned version: numerators of series coefficients of 1/(1 + cos(sqrt(x))); see Mathematica. - Clark Kimberling, Dec 06 2016

Crossrefs

Programs

  • Maple
    with(numtheory): c := n->(2^(2*n)-1)*bernoulli(2*n)/(2*n)!; seq(numer(c(n)),n=1..20); # C. Ronaldo
  • Mathematica
    Numerator[CoefficientList[Series[1/(1+Cosh[Sqrt[x]]), {x, 0, 24}], x]]
    Numerator[CoefficientList[Series[1/(1+Cos[Sqrt[x]]), {x, 0, 30}], x]]
    (* unsigned version, Clark Kimberling, Dec 06 2016 *)

Formula

a(n) = numerator(c(n+1)) where c(n)=(2^(2*n)-1)*B(2*n)/(2*n)!, B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Numerators of expansion of cosec(x)-cot(x) = 1/2*x+1/4*x^3/3!+1/2*x^5/5!+17/8*x^7/7!+31/2*x^9/9!+... - Ralf Stephan, Dec 21 2004 (Comment was applied to wrong entry, corrected by Alessandro Musesti (musesti(AT)gmail.com), Nov 02 2007)
E.g.f.: 1/sin(x)-cot(x). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: x/G(0); G(k) = 4*k+2-x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: (1+x/(x-2*Q(0)))/2; Q(k) = 8*k+2+x/(1+(2*k+1)*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: x/(x+Q(0)); Q(k) = x+(x^2)/((4*k+1)*(4*k+2)-(4*k+1)*(4*k+2)/(1+(4*k+3)*(4*k+4)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
E.g.f.: T(0)/2, where T(k) = 1 - x^2/(x^2 - (4*k+2)*(4*k+6)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2013
Aerated, these are the numerators of the Taylor series coefficients of 2 * tanh(x/2) (cf. A000182 and A198631). - Tom Copeland, Oct 19 2016

A258880 E.g.f. satisfies: A(x) = Integral 1 + A(x)^3 dx.

Original entry on oeis.org

1, 6, 540, 184680, 157600080, 270419925600, 816984611467200, 3971317527112003200, 29097143353353192480000, 305823675529741700675520000, 4435486895868663971869188480000, 86036822683997062842122964537600000, 2175352015640142857526698650779456000000
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2015

Keywords

Comments

Note: Sum_{n>=0} (-1)^n*x^(3*n+1)/(3*n+1) = log( (1+x)/(1-x^3)^(1/3) )/2 + Pi*sqrt(3)/18 - atan( (1-2*x)*sqrt(3)/3 )*sqrt(3)/3.

Examples

			E.g.f.: A(x) = x + 6*x^4/4! + 540*x^7/7! + 184680*x^10/10! + 157600080*x^13/13! + 270419925600*x^16/16! +...
where Series_Reversion(A(x)) =  x - x^4/4 + x^7/7 - x^10/10 + x^13/13 - x^16/16 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 13;
    A[_] = 0;
    Do[A[x_] = Integrate[1 + A[x]^3, x] + O[x]^k // Normal, {k, 1, 3 terms}];
    DeleteCases[CoefficientList[A[x], x] Range[0, 3 terms - 2]!, 0] (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    {a(n) = local(A=x); A = serreverse( sum(m=0,n, (-1)^m * x^(3*m+1)/(3*m+1) ) +O(x^(3*n+2)) ); (3*n+1)!*polcoeff(A,3*n+1)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* E.g.f. A(x) = Integral 1 + A(x)^3 dx.: */
    {a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^3 + O(x^(3*n+2)) )); (3*n+1)!*polcoeff(A,3*n+1)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f.: Series_Reversion( Integral 1/(1+x^3) dx ).
E.g.f.: Series_Reversion( Sum_{n>=0} (-1)^n * x^(3*n+1)/(3*n+1) ).
a(n) ~ 3^(15*n/2 + 17/4) * n^(3*n+1) / (exp(3*n) * (2*Pi)^(3*n+3/2)). - Vaclav Kotesovec, Jun 15 2015

A000146 From von Staudt-Clausen representation of Bernoulli numbers: a(n) = Bernoulli(2n) + Sum_{(p-1)|2n} 1/p.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, -6, 56, -528, 6193, -86579, 1425518, -27298230, 601580875, -15116315766, 429614643062, -13711655205087, 488332318973594, -19296579341940067, 841693047573682616, -40338071854059455412, 2115074863808199160561, -120866265222965259346026
Offset: 1

Views

Author

Keywords

Comments

The von Staudt-Clausen theorem states that this number is always an integer.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 168-170.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Section 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A000146 := proc(n) local a ,i,p; a := bernoulli(2*n) ;for i from 1 do p := ithprime(i) ; if (2*n) mod (p-1) = 0 then a := a+1/p ; elif p-1 > 2*n then break; end if; end do: a ; end proc: # R. J. Mathar, Jul 08 2011
  • Mathematica
    Table[ BernoulliB[2 n] + Total[ 1/Select[ Prime /@ Range[n+1], Divisible[2n, #-1] &]], {n, 1, 22}] (* Jean-François Alcover, Oct 12 2011 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(2*n,d, isprime(d+1)/(d+1))+bernfrac(2*n))
    
  • Python
    from fractions import Fraction
    from sympy import bernoulli, divisors, isprime
    def A000146(n): return int(bernoulli(m:=n<<1)+sum(Fraction(1,d+1) for d in divisors(m,generator=True) if isprime(d+1))) # Chai Wah Wu, Apr 14 2023

Extensions

Signs courtesy of Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)
More terms from Michael Somos

A132049 Numerator of 2*n*A000111(n-1)/A000111(n): approximations of Pi, using Euler (up/down) numbers.

Original entry on oeis.org

2, 4, 3, 16, 25, 192, 427, 4352, 12465, 158720, 555731, 8491008, 817115, 626311168, 2990414715, 60920233984, 329655706465, 7555152347136, 45692713833379, 232711080902656, 7777794952988025, 217865914337460224
Offset: 1

Views

Author

Wolfdieter Lang Sep 14 2007

Keywords

Comments

The denominators are given in A132050.
a(n)/n = 2, 2, 1, 4, 5, 32, 61, 544, ... are integers for n<=19. a(20)/20 = 58177770225664/5. - Paul Curtz, Mar 25 2013, Apr 04 2013

Examples

			Rationals r(n): [3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
		

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 31. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.

Crossrefs

Cf. triangle A008281 (main diagonal give zig-zag numbers A000111), A223925.

Programs

  • Maple
    S := proc(n, k) option remember;
    if k=0 then `if`(n=0,1,0) else S(n,k-1)+S(n-1,n-k) fi end:
    R := n -> 2*n*S(n-1,n-1)/S(n,n);
    A132049 := n -> numer(R(n)); A132050 := n -> denom(R(n));
    seq(A132049(i),i=3..22); # Peter Luschny, Aug 04 2011
  • Mathematica
    e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)]]; r[n_] := 2*n*(e[n-1]/e[n]); a[n_] := Numerator[r[n]]; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Mar 18 2013 *)
  • Python
    from itertools import islice, count, accumulate
    from fractions import Fraction
    def A132049_gen(): # generator of terms
        yield 2
        blist = (0,1)
        for n in count(2):
            yield Fraction(2*n*blist[-1],(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]).numerator
    A132049_list = list(islice(A132049_gen(),40)) # Chai Wah Wu, Jun 09-11 2022

Formula

a(n)=numerator(r(n)) with the rationals r(n)=2*n*e(n-1)/e(n), where e(n)=A000111(n) ("zig-zag" or "up-down" numbers), i.e., e(2*k)=A000364(k) (Euler numbers, secant numbers, "zig"-numbers) and e(2*k+1)=A000182(k+1),k>=0, (tangent numbers, "zag"-numbers). Rationals in lowest terms.

Extensions

Entries confirmed by N. J. A. Sloane, May 10 2012
More explicit definition from M. F. Hasler, Apr 03 2013
a(1) and a(2) prepended by Paul Curtz, Apr 04 2013

A185896 Triangle of coefficients of (1/sec^2(x))*D^n(sec^2(x)) in powers of t = tan(x), where D = d/dx.

Original entry on oeis.org

1, 0, 2, 2, 0, 6, 0, 16, 0, 24, 16, 0, 120, 0, 120, 0, 272, 0, 960, 0, 720, 272, 0, 3696, 0, 8400, 0, 5040, 0, 7936, 0, 48384, 0, 80640, 0, 40320, 7936, 0, 168960, 0, 645120, 0, 846720, 0, 362880, 0, 353792, 0, 3256320, 0, 8951040, 0, 9676800, 0, 3628800
Offset: 0

Views

Author

Peter Bala, Feb 07 2011

Keywords

Comments

DEFINITION
Define polynomials R(n,t) with t = tan(x) by
... (d/dx)^n sec^2(x) = R(n,tan(x))*sec^2(x).
The first few are
... R(0,t) = 1
... R(1,t) = 2*t
... R(2,t) = 2 + 6*t^2
... R(3,t) = 16*t + 24*t^3.
This triangle shows the coefficients of R(n,t) in ascending powers of t called the tangent number triangle in [Hodges and Sukumar].
The polynomials R(n,t) form a companion polynomial sequence to Hoffman's two polynomial sequences - P(n,t) (A155100), the derivative polynomials of the tangent and Q(n,t) (A104035), the derivative polynomials of the secant. See also A008293 and A008294.
COMBINATORIAL INTERPRETATION
A combinatorial interpretation for the polynomial R(n,t) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges].
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...|x_n|} = {1,2...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation.
Then 0,x_1,...,x_n,0 is a snake of type S(n;0,0) when 0 < x_1 > x_2 < ... 0.
For example, 0 4 -3 -1 -2 0 is a snake of type S(4;0,0).
Let sc be the number of sign changes through a snake
... sc = #{i, 1 <= i <= n-1, x_i*x_(i+1) < 0}.
For example, the snake 0 4 -3 -1 -2 0 has sc = 1. The polynomial R(n,t) is the generating function for the sign change statistic on snakes of type S(n+1;0,0):
... R(n,t) = sum {snakes in S(n+1;0,0)} t^sc.
See the example section below for the cases n=1 and n=2.
PRODUCTION MATRIX
Define three arrays R, L, and S as
... R = superdiag[2,3,4,...]
... L = subdiag[1,2,3,...]
... S = diag[2,4,6,...]
with the indicated sequences on the main superdiagonal, the main subdiagonal and main diagonal, respectively, and 0's elsewhere. The array R+L is the production array for this triangle: the first row of (R+L)^n produces the n-th row of the triangle.
On the vector space of complex polynomials the array R, the raising operator, represents the operator p(x) - > d/dx (x^2*p(x)), and the array L, the lowering operator, represents the differential operator d/dx - see Formula (4) below.
The three arrays satisfy the commutation relations
... [R,L] = S, [R,S] = 2*R, [L,S] = -2*L
and hence give a representation of the Lie algebra sl(2).

Examples

			Table begins
  n\k|.....0.....1.....2.....3.....4.....5.....6
  ==============================================
  0..|.....1
  1..|.....0.....2
  2..|.....2.....0.....6
  3..|.....0....16.....0....24
  4..|....16.....0...120.....0...120
  5..|.....0...272.....0...960.....0...720
  6..|...272.....0..3696.....0..8400.....0..5040
Examples of recurrence relation
  T(4,2) = 3*(T(3,1) + T(3,3)) = 3*(16 + 24) = 120;
  T(6,4) = 5*(T(5,3) + T(5,5)) = 5*(960 + 720) = 8400.
Example of integral formula (6)
... Integral_{t = -1..1} (1-t^2)*(16-120*t^2+120*t^4)*(272-3696*t^2+8400*t^4-5040*t^6) dt = 2830336/1365 = -2^13*Bernoulli(12).
Examples of sign change statistic sc on snakes of type (0,0)
= = = = = = = = = = = = = = = = = = = = = =
.....Snakes....# sign changes sc.......t^sc
= = = = = = = = = = = = = = = = = = = = = =
n=1
...0 1 -2 0...........1................t
...0 2 -1 0...........1................t
yields R(1,t) = 2*t;
n=2
...0 1 -2 3 0.........2................t^2
...0 1 -3 2 0.........2................t^2
...0 2 1 3 0..........0................1
...0 2 -1 3 0.........2................t^2
...0 2 -3 1 0.........2................t^2
...0 3 1 2 0..........0................1
...0 3 -1 2 0.........2................t^2
...0 3 -2 1 0.........2................t^2
yields
R(2,t) = 2 + 6*t^2.
		

Crossrefs

Programs

  • Maple
    R = proc(n) option remember;
    if n=0 then RETURN(1);
    else RETURN(expand(diff((u^2+1)*R(n-1), u))); fi;
    end proc;
    for n from 0 to 12 do
    t1 := series(R(n), u, 20);
    lprint(seriestolist(t1));
    od:
  • Mathematica
    Table[(-1)^(n + 1)*(-1)^((n - k)/2)*Sum[j!*StirlingS2[n + 1, j]*2^(n + 1 - j)*(-1)^(n + j - k)*Binomial[j - 1, k], {j, k + 1, n + 1}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
  • PARI
    {T(n, k) = if( n<0 || k<0 || k>n, 0, if(n==k, n!, (k+1)*(T(n-1, k-1) + T(n-1, k+1))))};
    
  • PARI
    {T(n, k) = my(A); if( n<0 || k>n, 0, A=1; for(i=1, n, A = ((1 + x^2) * A)'); polcoeff(A, k))}; /* Michael Somos, Jun 24 2017 */

Formula

GENERATING FUNCTION
E.g.f.:
(1)... F(t,z) = 1/(cos(z)-t*sin(z))^2 = Sum_{n>=0} R(n,t)*z^n/n! = 1 + (2*t)*z + (2+6*t^2)*z^2/2! + (16*t+24*t^3)*z^3/3! + ....
The e.g.f. equals the square of the e.g.f. of A104035.
Continued fraction representation for the o.g.f:
(2)... F(t,z) = 1/(1-2*t*z - 2*(1+t^2)*z^2/(1-4*t*z -...- n*(n+1)*(1+t^2)*z^2/(1-2*n*(n+1)*t*z -....
RECURRENCE RELATION
(3)... T(n,k) = (k+1)*(T(n-1,k-1) + T(n-1,k+1)).
ROW POLYNOMIALS
The polynomials R(n,t) satisfy the recurrence relation
(4)... R(n+1,t) = d/dt{(1+t^2)*R(n,t)} with R(0,t) = 1.
Let D be the derivative operator d/dt and U = t, the shift operator.
(5)... R(n,t) = (D + DUU)^n 1
RELATION WITH OTHER SEQUENCES
A) Derivative Polynomials A155100
The polynomials (1+t^2)*R(n,t) are the polynomials P_(n+2)(t) of A155100.
B) Bernoulli Numbers A000367 and A002445
Put S(n,t) = R(n,i*t), where i = sqrt(-1). We have the definite integral evaluation
(6)... Integral_{t = -1..1} (1-t^2)*S(m,t)*S(n,t) dt = (-1)^((m-n)/2)*2^(m+n+3)*Bernoulli(m+n+2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
C) Zigzag Numbers A000111
(7)... R_n(1) = A000828(n+1) = 2^n*A000111(n+1).
D) Eulerian Numbers A008292
The polynomials R(n,t) are related to the Eulerian polynomials A(n,t) via
(8)... R(n,t) = (t+i)^n*A(n+1,(t-i)/(t+i))
with the inverse identity
(9)... A(n+1,t) = (-i/2)^n*(1-t)^n*R(n,i*(1+t)/(1-t)),
where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials and i = sqrt(-1).
E) Ordered set partitions A019538
(10)... R(n,t) = (-2*i)^n*T(n+1,x)/x,
where x = i/2*t - 1/2 and T(n,x) is the n-th row po1ynomial of A019538;
F) Miscellaneous
Column 1 is the sequence of tangent numbers - see A000182.
A000670(n+1) = (-i/2)^n*R(n,3*i).
A004123(n+2) = 2*(-i/2)^n*R(n,5*i).
A080795(n+1) =(-1)^n*(sqrt(-2))^n*R(n,sqrt(-2)). - Peter Bala, Aug 26 2011
From Leonid Bedratyuk, Aug 12 2012: (Start)
T(n,k) = (-1)^(n+1)*(-1)^((n-k)/2)*Sum_{j=k+1..n+1} j! *stirling2(n+1,j) *2^(n+1-j) *(-1)^(n+j-k) *binomial(j-1,k), see A059419.
Sum_{j=i+1..n+1}((1-(-1)^(j-i))/(2*(j-i))*(-1)^((n-j)/2)*T(n,j))=(n+1)*(-1)^((n-1-i)/2)*T(n-1,i), for n>1 and 0
G.f.: 1/G(0,t,x), where G(k,t,x) = 1 - 2*t*x - 2*k*t*x - (1+t^2)*(k+2)*(k+1)*x^2/G(k+1,t,x); (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Dec 27 2013
Previous Showing 31-40 of 180 results. Next