cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 4810 results. Next

A216134 Numbers k such that 2 * A000217(k) + 1 is triangular.

Original entry on oeis.org

0, 1, 4, 9, 26, 55, 154, 323, 900, 1885, 5248, 10989, 30590, 64051, 178294, 373319, 1039176, 2175865, 6056764, 12681873, 35301410, 73915375, 205751698, 430810379, 1199208780, 2510946901, 6989500984, 14634871029, 40737797126, 85298279275, 237437281774
Offset: 0

Views

Author

Raphie Frank, Sep 01 2012

Keywords

Comments

Numbers n such that 2*triangular(n) + 1 is a triangular number. Equivalently, numbers n such that n^2 + n + 1 is a triangular number. - Alex Ratushnyak, Apr 18 2013
For n > 0, a(n) is the n-th almost cobalancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Cf. A000217, A069017 (triangular numbers of the form k^2 + k + 1).

Programs

  • Mathematica
    LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 4, 9, 26}, 40] (* T. D. Noe, Sep 03 2012 *)
  • PARI
    Vec( x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 13 2014
    
  • PARI
    isok(n) = ispolygonal(n*(n+1) + 1, 3); \\ Michel Marcus, Aug 13 2014

Formula

G.f.: x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)). - R. J. Mathar, Sep 08 2012
sqrt(2) = lim_{k->infinity} ((a(2k+1) + a(2k) + 1)/2)/(a(2k+1) - a(2k)) = lim_{k->infinity} A001333(2k + 1)/A000129(2k + 1).
1 + (sqrt 2) = lim_{k->infinity} (a(2k + 1) - a(2k))/(a(2k + 1) - 2*a(2k) + a(2k - 1)) = lim_{k->infinity} A000129(2k + 1)/A000129(2k).
1 + 1/(sqrt 2) = lim_{k->infinity} (a(2k+1) - a(2k))/(a(2k) - a(2k - 1)) = lim_{k->infinity} A000129(2k + 1)/A001333(2k).
a(n) = (2*A000129(n) + (-1)^n*(A000129(2*floor(n/2) - 1) - (-1)^n)/2). - Raphie Frank, Jan 04 2013
From Raphie Frank, Jan 04 2013: (Start)
A124174(n) = a(n)*(a(n) + 1)/2.
A079496(n) = a(n + 1) - a(n).
A000129(2n) = a(2n) - 2*a(2n - 1) + a(2n - 2).
A000129(2n) = a(2n + 1) - 2*a(2n) + a(2n - 1).
A000129(2n + 1) = a(2n + 1) - a(2n).
A001333(2n) = a(2n) - a(2n - 1).
A001333(2n + 1) = (a(2n + 1) + a(2n) + 1)/2.
A006451(n + 1) = (a(n + 2) + a(n))/2.
A006452(n + 2) = (a(n + 2) - a(n))/2.
A124124(n + 2) = (a(n + 2) + a(n))/2 + (a(n + 2) - a(n)).
(End)
a(n + 2) = sqrt(8*a(n)^2 + 8*a(n) + 9) + 3*a(n) + 1; a(0) = 0, a(1) = 1. - Raphie Frank, Feb 02 2013
a(n) = (3/8 + sqrt(2)/4)*(1 + sqrt(2))^n + (-1/8 - sqrt(2)/8)*(-1 + sqrt(2))^n + (3/8 - sqrt(2)/4)*(1 - sqrt(2))^n + (-1/8 + sqrt(2)/8)*(-1 - sqrt(2))^n - 1/2. - Robert Israel, Aug 13 2014
E.g.f.: (1/4)*(-2*cosh(x) - 2*sinh(x) + 2*cosh(sqrt(2)*x)*(cosh(x) + 2*sinh(x)) + sqrt(2)*(cosh(x) + 3*sinh(x))*sinh(sqrt(2)*x)). - Stefano Spezia, Dec 10 2019

A259156 Positive triangular numbers (A000217) that are pentagonal numbers (A000326) divided by 2.

Original entry on oeis.org

6, 105, 58311, 1008910, 559902916, 9687554415, 5376187741821, 93019896484620, 51622154137063026, 893177036357767525, 495675918647891434531, 8576285810087387291130, 4759480119234899417304336, 82349495455282056411663435, 45700527609217585557064800441
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000217 and A193866 (even pentagonal numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			6 is in the sequence because 6 is the 3rd triangular number, and 2*6 is the 3rd pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 9602, -9602, -1, 1}, {6, 105, 58311, 1008910, 559902916}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-x*(x^3+594*x^2+99*x+6)/((x-1)*(x^2-98*x+1)*(x^2+98*x+1)) + O(x^20))

Formula

G.f.: -x*(x^3+594*x^2+99*x+6) / ((x-1)*(x^2-98*x+1)*(x^2+98*x+1)).

A083392 Alternating partial sums of A000217.

Original entry on oeis.org

0, -1, 2, -4, 6, -9, 12, -16, 20, -25, 30, -36, 42, -49, 56, -64, 72, -81, 90, -100, 110, -121, 132, -144, 156, -169, 182, -196, 210, -225, 240, -256, 272, -289, 306, -324, 342, -361, 380, -400, 420, -441, 462, -484, 506, -529, 552, -576, 600, -625, 650, -676, 702
Offset: 0

Views

Author

Jon Perry, Jun 11 2003

Keywords

Comments

Conjecture: for n > 0, a(n-1) is equal to the determinant of an n X n symmetric Toeplitz matrix M(n) whose first row consists of a single zero followed by successive positive integers repeated (A004526). - Stefano Spezia, Jan 10 2020

Examples

			a(4) = t(0) - t(1) + t(2) - t(3) + t(4) = 0 - 1 + 3 - 6 + 10 = 6.
G.f. = - x + 2*x^2 - 4*x^3 + 6*x^4 - 9*x^5 + 12*x^6 - 16*x^7 + ... - _Michael Somos_, Apr 27 2020
		

Crossrefs

Programs

  • Magma
    [(-1)^n*((n^2+n)/2 - Floor(n^2/4)): n in [0..50]]; // G. C. Greubel, Oct 29 2017
  • Mathematica
    LinearRecurrence[{-2,0,2,1},{0,-1,2,-4},60] (* Harvey P. Dale, Mar 16 2016 *)
  • PARI
    t(n)=n*(n+1)/2;
    for (n=0,30,print1(sum(i=0,n,(-1)^i*t(i)), ", "))
    

Formula

a(n) = Sum_{i=0..n} (-1)^i*t(i) where t(i) = i*(i+1)/2.
From R. J. Mathar, Feb 09 2010: (Start)
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4) for n > 3.
G.f.: x/((x-1)*(1+x)^3). (End)
a(n) = (-1)^n * ((n^2+n)/2 - floor(n^2/4)). - William A. Tedeschi, Aug 24 2010
E.g.f.: (1/4)*((x - 3)*x*cosh(x) - (x^2 - 3*x + 1)*sinh(x)). - Stefano Spezia, Jan 11 2020
Negative of the Euler transform of length 2 sequence [-2, 3]. - Michael Somos, Apr 27 2020

Extensions

More terms from David W. Wilson, Jun 14 2003

A116476 Numbers n such that T(n) + T(n+1) + ... + T(n+10) is a square, where T(m) = A000217(m) is the m-th triangular number.

Original entry on oeis.org

13, 46, 229, 1608, 7335, 20304, 92391, 635710, 2892133, 8001886, 36403981, 250470288, 1139495223, 3152724936, 14343078279, 98684659918, 448958227885, 1242165625054, 5651136440101, 38881505539560, 176888402293623, 489410103548496
Offset: 1

Views

Author

Edward Fedorovich (chipramy(AT)012.net.il), Mar 29 2006

Keywords

Comments

Positive integers n such that 11*n^2 + 121*n + 440 = 2*m^2 for some integer m. - Max Alekseyev, Jan 20 2010

Examples

			13 belongs to this sequence since T(13) + T(14) + ... + T(23) = 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = 1936 = 44^2.
		

Crossrefs

Programs

  • Mathematica
    For[n = 1, n < 100000, n++, If[IntegerQ[Sqrt[Sum[i*(i+1)/2, {i, n, n + 10}]]], Print[n]]] (* Stefan Steinerberger, Mar 30 2006 *)
    LinearRecurrence[{1,0,0,394,-394,0,0,-1,1},{13,46,229,1608,7335,20304,92391,635710,2892133},30] (* Harvey P. Dale, Sep 01 2017 *)

Formula

For n>8, a(n) = 394*a(n-4) - a(n-8) + 2156. - Max Alekseyev, Jan 20 2010
G.f.: x*(2*x^8+7*x^7+15*x^6+33*x^5-605*x^4-1379*x^3-183*x^2-33*x-13)/((x-1)*(x^8-394*x^4+1)). - Colin Barker, Nov 22 2012

Extensions

Extended by Max Alekseyev, Jan 20 2010

A064816 Numbers which are the sums of two positive triangular numbers (A000217) in exactly two different ways.

Original entry on oeis.org

16, 31, 42, 46, 51, 56, 72, 76, 94, 111, 121, 123, 126, 133, 141, 146, 157, 172, 174, 186, 191, 196, 198, 216, 225, 226, 231, 237, 241, 246, 259, 268, 281, 286, 289, 291, 297, 301, 306, 310, 315, 321, 326, 328, 336, 342, 346, 354, 366, 367, 379, 380, 384
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 22 2001

Keywords

Comments

Note that A000217(0)=0, so even 6 = 6 + 0 = 3 + 3, it is not a member of this sequence. - Wolfdieter Lang, Feb 15 2011

Examples

			16 = 15 + 1 = 10 + 6.
		

Programs

  • PARI
    Tri(n)= { n*(n + 1)/2 } { n=0; for (m=1, 10^9, k=0; i=1; until (t>=m\2 || k>2, t=Tri(i); j=i; i++; until (s>=m || k>2, s=t + Tri(j); j++; if (s==m, k++))); if (k==2, write("b064816.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Sep 27 2009

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Sep 27 2009
Name corrected by Wolfdieter Lang, Feb 15 2011

A154296 Primes of the form (1+2+3+...+m)/15 = A000217(m)/15, for some m.

Original entry on oeis.org

3, 7, 29, 31
Offset: 1

Views

Author

Keywords

Comments

Original definition: Primes of the form 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=15.
The corresponding m-values are m=9, 14, 29, 30. It is clear that for m > 30, T(m)/15 = m*(m+1)/30 cannot be a prime. - M. F. Hasler, Dec 31 2012
All of the sequences A154296, ..., A154304 could or should be grouped together in a single ("fuzzy"?) table. It would be more interesting to have the function f(n) which gives the *number* of primes of the form T(k)/n. - M. F. Hasler, Jan 06 2013
Also primes p such that 120*p+1 is a perfect square. - Lamine Ngom, Jul 22 2023

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/15;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
    Select[(Accumulate[Range[200]])/15,PrimeQ] (* Harvey P. Dale, Oct 30 2011 *)
  • PARI
    select(x->denominator(x)==1 & isprime(x), vector(30,m,m^2+m)/30)  \\ M. F. Hasler, Dec 31 2012

Extensions

Edited by M. F. Hasler, Dec 31 2012

A154304 Primes of the form (1+2+...+m)/210 = A000217(m)/210.

Original entry on oeis.org

3, 17, 47, 419, 421
Offset: 1

Views

Author

Keywords

Comments

Original definition : Primes of the form 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=210.
The corresponding m-values are m=35,84,140,419,420. It is clear that for m>420, T(m)/210 = m(m+1)/420 cannot be a prime, since then each factor in the numerator is larger than the denominator. All of the sequences A154296, ..., A154304 could or should be grouped together in a single ("fuzzy"?) table. It would be more interesting to have the function f(n) which gives the *number* of primes of the form T(k)/n. - M. F. Hasler, Jan 06 2013

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/210;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,6*9!}];lst
  • PARI
    A154304(d=210)={select(x->denominator(x)==1 && isprime(x), vector(d*=2, m, m^2+m)/d)}  \\ - M. F. Hasler, Jan 06 2013

Extensions

Edited by M. F. Hasler, Jan 06 2013

A190404 Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.

Original entry on oeis.org

8, 2, 0, 8, 1, 6, 2, 8, 0, 3, 2, 7, 5, 7, 6, 9, 3, 3, 1, 4, 6, 9, 2, 1, 3, 8, 5, 1, 1, 2, 7, 1, 4, 7, 1, 7, 1, 1, 3, 0, 3, 0, 7, 6, 8, 9, 7, 8, 3, 6, 9, 8, 7, 3, 9, 0, 2, 3, 2, 5, 8, 1, 1, 1, 9, 0, 0, 7, 2, 3, 0, 1, 8, 6, 6, 6, 7, 5, 8, 8, 7, 8, 0, 0, 1, 8, 2, 0, 8, 5, 8, 1, 1, 6, 7, 9, 5, 6, 6, 5, 4, 3, 0, 4, 4, 8, 6, 7, 6, 5, 8, 1, 7, 1, 8, 0, 9, 7, 3, 0
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Suppose that F={f(i,j): i>=1, j>=1} is an array of positive integers such that every positive integer occurs exactly once in F.
Let G=G(F) denote the array defined by g(i,j)=(1/2)^f(i,j);
R(i)=Sum_{j>=1} g(i,j); i-th row sum of G;
C(j)=Sum_{i>=1} g(i,j); j-th column sum of G;
U(j)=Sum_{i>=1} g(i,i+j-1); j-th upper diagonal sum of G;
L(i)=Sum_{j>=1} g(i+j,j); i-th lower diagonal sum of G;
R(odds)=Sum_{i>=1} R(2i-1); sum, odd numbered rows of G;
R(evens)=Sum_{i>=1} R(2i); sum, even numbered rows of G;
C(odds)=Sum_{j>=1} R(2j-1); sum, odd numbered cols of G;
C(evens)=Sum_{j>=1} R(2j); sum, even numbered cols of G;
UT=Sum_{j>=1} U(j); sum, upper triangular subarray of G;
LT=Sum_{i>=1} L(i); sum, lower triangular subarray of G.
...
Note that R(odds)+R(evens)=C(odds)+C(evens)=UT+LT=1.
...
For the natural number array F=A000027:
R(1)=0.820816280327576933146921385113... (A190404)
R(2)=0.160408140163788466573460692556...
R(3)=0.0177040700818942332867303462782...
R(4)=0.00103953504094711664336517313909...
R(5)=0.0000314862704735583216825865695447...
...
R(odds)=0.838551840434481240061632331355800... (A190408)
R(evens)=0.161448159565518759938367668644199...(A190409)
...
C(1)=0.64163256065515386629... (A190405)
C(2)=0.28326512131030773259...
C(3)=0.066530242620615465175...
C(4)=0.0080604852412309303507...
C(5)=0.00049597048246186070148...
...
C(odds)=0.7086590131172367153696485920526...(A190410)
C(evens)=0.29134098688276328463035140794... (A190411)
...
D(1)=0.53137210011527713548... (A190406)
D(2)=0.25391006493009715683...
D(3)=0.062744200230554270960...
D(4)=0.0078201298601943136650...
D(5)=0.00048840046110854191952...
...
E(1)=0.12695503246504857842... (A190407)
E(2)=0.015686050057638567740...
E(3)=0.00097751623252428920813...
E(4)=0.000030525028819283869970...
E(5)=0.00000047686626214460406264...
...
UT=0.8563503956097795739814618239914245448... (A190412)
LT=0.1436496043902204260185381760085754551... (A190415)

Examples

			0.820816280327576933146921385113...
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := i + (j + i - 2)(j + i - 1)/2;
    TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *)
    r[i_] := Sum[2^-f[i, j], {j,1,400}];    (* C(row i) *)
    c[j_] := Sum[2^-f[i,j], {i,1,400}];     (* C(col j) *)
    d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *)
    e[h_] := Sum[2^-f[i+h,i], {i,1,200}];   (* C(ldiag h) *)
    RealDigits[r[1], 10, 120, -1]  (* A190404 *)
    N[r[1], 30]
    N[r[2], 30]
    N[r[3], 30]
    N[r[4], 30]
    N[r[5], 30]
    N[r[6], 30]
    RealDigits[c[1], 10, 120, -1] (* A190405 *)
    N[c[1], 20]
    N[c[2], 20]
    N[c[3], 20]
    N[c[4], 20]
    N[c[5], 20]
    N[c[6], 20]
    RealDigits[d[1], 10, 20, -1] (* A190406 *)
    N[d[1], 20]
    N[d[2], 20]
    N[d[3], 20]
    N[d[4], 20]
    N[d[5], 20]
    N[d[6], 20]
    RealDigits[e[1], 10, 20, -1] (* A190407 *)
    N[e[1], 20]
    N[e[2], 20]
    N[e[3], 20]
    N[e[4], 20]
    N[e[5], 20]
    N[e[6], 20]
  • Sage
    def A190404(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b)
    A190404(409) # Danny Rorabaugh, Mar 25 2015

Formula

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T=A000217.
A190406: Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).
Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - Antonio Graciá Llorente, Oct 01 2024
Equals A299998/2. - Hugo Pfoertner, Oct 01 2024

A240088 The number of ways of writing n as an ordered sum of a triangular number (A000217), a square (A000290) and a pentagonal number (A000326).

Original entry on oeis.org

1, 3, 3, 2, 3, 4, 4, 4, 3, 3, 5, 5, 5, 3, 3, 7, 7, 5, 2, 6, 5, 4, 8, 5, 6, 4, 8, 7, 5, 7, 4, 9, 6, 5, 4, 3, 9, 12, 9, 4, 7, 9, 8, 4, 6, 8, 7, 8, 4, 8, 9, 10, 9, 6, 10, 6, 7, 10, 9, 8, 7, 11, 7, 4, 10, 8, 10, 10, 7, 5, 10, 14, 11, 7, 6, 11, 10, 10, 4, 11, 10, 10, 13, 8, 7, 7, 13, 12, 8, 8, 6, 10, 17, 8, 10, 7, 16, 10, 3, 12, 9
Offset: 0

Views

Author

Robert G. Wilson v, Mar 31 2014

Keywords

Comments

0 and 1 are triangular numbers, square numbers and pentagonal numbers.
It is conjectured that a(n) is always positive - this is one of the conjectures in Conjecture 1.1 of Sun (2009). - N. J. A. Sloane, Apr 01 2014
Note that both the conjecture in A160325 and the conjecture in A160324 imply that a(n) is always positive. - Zhi-Wei Sun, Apr 01 2014
a(n) > 0 for all n < 10^10. - Robert G. Wilson v, Aug 20 2016
Least number to be represented k ways, k >= 1: 0, 3, 1, 5, 10, 19, 15, 22, 31, 51, 61, 37, 82, 71, 126, 96, 92, 136, 162, 187, 206, 276, 191, 261, 236, 247, 317, 302, 401, 292, 422, 547, 456, 544, 551, 612, 591, 577, 521, 666, 742, 726, 682, 877, 796, 1052, 961, 1046, 1171, 1027, ..., . A275999.
Greatest number (conjectured) to be represented k ways, k >= 1: 0, 18, 168, 78, 243, 130, 553, 455, 515, 658, 865, 945, 633, 1918, 2258, 1385, 1583, 2828, 2135, 2335, 2785, 4533, 3168, 3478, 2790, 3868, 4193, 7328, 4953, 5278, 6390, 8148, 8015, 4585, 9160, 10485, 7613, 12333, 12025, 10178, 9923, 9720, 12558, 11340, 17420, 11753, 14893, 16155, 16415, 14343, ..., .
Conjectured lists of numbers that are represented in k >= 1 ways:
1: 0;
2: 3, 18;
3: 1, 2, 4, 8, 9, 13, 14, 35, 98, 168;
4: 5, 6, 7, 21, 25, 30, 34, 39, 43, 48, 63, 78;
5: 10, 11, 12, 17, 20, 23, 28, 33, 69, 193, 203, 230, 243;
6: 19, 24, 32, 44, 53, 55, 74, 90, 111, 130;
7: 15, 16, 27, 29, 40, 46, 56, 60, 62, 68, 73, 84, 85, 95, 108, 113, 123, 135, 139, 163, 165, 273, 553;
8: 22, 26, 42, 45, 47, 49, 59, 65, 83, 88, 89, 93, 112, 119, 125, 134, 140, 144, 186, 205, 233, 244, 320, 405, 455;
9: 31, 36, 38, 41, 50, 52, 58, 100, 109, 124, 160, 214, 249, 308, 358, 515; ..., .

Crossrefs

Programs

  • Maple
    # requires Maple 17 and up
    with(SignalProcessing):
    N:= 10000;  # to get terms up to a(N)
    A:= Array(0..N,datatype=float);
    B:= Array(0..N,datatype=float);
    C:= Array(0..N,datatype=float);
    for i from 0 to floor(sqrt(N)) do A[i^2]:= 1 od:
    for i from 0 to floor((1+sqrt(1+8*N))/2) do B[i*(i-1)/2]:= 1 od:
    for i from 0 to floor((1+sqrt(1+24*N))/6) do C[i*(3*i-1)/2]:= 1 od:
    R:= Convolution(Convolution(A,B),C);
    R:= evalhf(map(round,R));
    # Note that a(i) = R[i+1] for i from 0 to N
    # Robert Israel, Apr 01 2014
  • Mathematica
    p = Table[n (3n - 1)/2, {n, 0, 26}]; s = Table[n^2, {n, 0, 32}]; t = Table[n (n + 1)/2, {n, 0, 45}]; a = Sort@ Flatten@ Table[ p[[i]] + s[[j]] + t[[k]], {i, 26}, {j, 32}, {k, 45}]; Table[ Count[a, n], {n, 0, 105}]

A288126 Number of partitions of n-th triangular number (A000217) into distinct triangular parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 4, 7, 6, 4, 14, 15, 19, 31, 28, 43, 57, 80, 103, 127, 181, 234, 295, 398, 539, 663, 888, 1178, 1419, 1959, 2519, 3102, 4201, 5282, 6510, 8717, 11162, 13557, 18108, 22965, 28206, 36860, 46350, 58060, 73857, 93541, 117058, 147376, 186158, 232949, 292798, 365639
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Examples

			a(4) = 2 because 4th triangular number is 10 and we have [10], [6, 3, 1].
		

Crossrefs

Programs

  • Maple
    N:= 100:
    G:= mul(1+x^(k*(k+1)/2),k=1..N):
    seq(coeff(G,x,n*(n+1)/2),n=0..N); # Robert Israel, Jun 06 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + x^(k (k + 1)/2), {k, 1, n}], {x, 0, n (n + 1)/2}], {n, 0, 54}]

Formula

a(n) = [x^(n*(n+1)/2)] Product_{k>=1} (1 + x^(k(k+1)/2)).
a(n) = A024940(A000217(n)).
Previous Showing 21-30 of 4810 results. Next