A001970
Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.
Original entry on oeis.org
1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, 5026410, 8619551, 14722230, 25057499, 42494975, 71832114, 121024876, 203286806, 340435588, 568496753, 946695386
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ...
a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3).
The a(4)=14 multiset partitions whose total sum of parts is 4 are:
((4)),
((13)), ((1)(3)),
((22)), ((2)(2)),
((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)),
((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - _Gus Wiseman_, Dec 19 2016
- A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d'une seule indéterminée, J. Reine angew. Math., 50 (1855), 313-317; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, p. 219.
- V. A. Liskovets, Counting rooted initially connected directed graphs. Vesci Akad. Nauk. BSSR, ser. fiz.-mat., No 5, 23-32 (1969), MR44 #3927.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239, where one finds a(n)-2, but with errors.
- J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order', Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000 (first 500 terms from T. D. Noe)
- Pieter Belmans, Segre symbols, 2016.
- Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See pp. 10, 16.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 148
- R. Kaneiwa, An asymptotic formula for Cayley's double partition function p(2; n), Tokyo J. Math. 2, 137-158 (1979).
- L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [DOI]
- M. Kozek, F. Luca, P. Pollack, and C. Pomerance, Harmonious pairs, 2014.
- M. Kozek, F. Luca, P. Pollack, and C. Pomerance, Harmonious numbers, IJNT, to appear.
- XiKun Li, JunLi Li, Bin Liu and CongFeng Qiao, The parametric symmetry and numbers of the entangled class of 2 × M × N system, Science China Physics, Mechanics & Astronomy, Volume 54, Number 8, 1471-1475, DOI: 10.1007/s11433-011-4395-9.
- Jessie Pitsillides, Segre Characteristic Equivalence, arXiv:2506.12065 [math.GM], 2025.
- Paul Pollack and Carl Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B, Vol. 3 (2016), pp. 1-26; Errata.
- N. J. A. Sloane, Transforms.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- J. J. Sylvester, The collected mathematical papers of James Joseph Sylvester, vol. 2, vol. 3, vol. 4.
- Index entries for sequences related to rooted trees
Related to
A001383 via generating function.
The multiplicative version (factorizations) is
A050336.
The ordered version (sequences of partitions) is
A055887.
-
Following Vladeta Jovovic:
a001970 n = a001970_list !! (n-1)
a001970_list = 1 : f 1 [1] where
f x ys = y : f (x + 1) (y : ys) where
y = sum (zipWith (*) ys a061259_list) `div` x
-- Reinhard Zumkeller, Oct 31 2015
-
with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
# second Maple program:
with(numtheory): with(combinat):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 19 2016
-
m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
-
from sympy.core.cache import cacheit
from sympy import npartitions, divisors
@cacheit
def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n
[a(n) for n in range(51)] # Indranil Ghosh, Aug 19 2017, after Maple code
# (Sage) # uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 1, 1)
a = EulerTransform(EulerTransform(b))
print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022
A006171
Number of factorization patterns of polynomials of degree n over integers.
Original entry on oeis.org
1, 1, 3, 5, 11, 17, 34, 52, 94, 145, 244, 370, 603, 899, 1410, 2087, 3186, 4650, 6959, 10040, 14750, 21077, 30479, 43120, 61574, 86308, 121785, 169336, 236475, 326201, 451402, 618135, 848209, 1153733, 1571063, 2123325, 2871419, 3857569, 5182999, 6924303
Offset: 0
For n=3 we have 3 = (3*1) = (1*3) = (2*1) + (1*1) = (1*2) + (1*1) = (1*1) + (1*1) + (1*1) so a(3)=5.
For n=4 we have the following 11 partitions, with the additive runs indicated by "[]": [4], [3]+[1], [2+2], [2]+[2], [2]+[1+1], [2]+[1]+[1], [1+1+1+1], [1+1+1]+[1], [1+1]+[1+1], [1+1]+[1]+[1], [1]+[1]+[1]+[1]. - _Gregory L. Simay_, May 25 2017
- R. A. Hultquist, G. L. Mullen and H. Niederreiter, Association schemes and derived PBIB designs of prime power order, Ars. Combin., 25 (1988), 65-82.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- A. K. Agarwal and G. L. Mullen, Partitions with "d(a) copies of a", J. Combin. Theory Ser. A, 48(1)(1988), 120-135.
- N. A. Brigham, A General Asymptotic Formula for Partition Functions, Proc. Amer. Math. Soc., vol. 1 (1950), pp. 182-191.
- William Q. Erickson, The Demazure product extended to biwords, arXiv:2407.13165 [math.CO], 2024. See p. 16.
- MathOverflow, Number of representations of an integer as an (arbitrary) sum of products, 2014.
- N. J. A. Sloane, Transforms
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(tau): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
max = 50; gf[x_] := Product[(1 - x^k)^-DivisorSigma[0, k], {k, 1, max}]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011 *)
nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2018, the fastest *)
nmax = 50; CoefficientList[Series[Product[Sum[PartitionsP[k]*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 26 2020 *)
-
{a(n) = if(n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x * O(x^n))^numdiv(k)), n))}; /* Michael Somos, Apr 01 2003 */
-
N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)); Vec(gf) \\ Joerg Arndt, May 03 2008
-
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */
-
{A060640(n)=sumdiv(n, d, d*sigma(n/d))}
{a(n)=polcoeff(exp(sum(m=1,n+1,A060640(m)*x^m/m)+x*O(x^n)),n)} /* Paul D. Hanna, Oct 19 2011 */
A319616
Number of non-isomorphic square multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
{{1}, {2}}
3: {{1,1,1}}
{{1}, {2,2}}
{{2}, {1,2}}
{{1}, {2},{3}}
4: {{1,1,1,1}}
{{1}, {1,2,2}}
{{1}, {2,2,2}}
{{2}, {1,2,2}}
{{1,1}, {2,2}}
{{1,2}, {1,2}}
{{1,2}, {2,2}}
{{1}, {1}, {2,3}}
{{1}, {2}, {3,3}}
{{1}, {3}, {2,3}}
{{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0] [1 0] [0 1] [2 0] [1 1] [1 1]
. [1 2] [0 3] [1 2] [0 2] [1 1] [0 2]
.
. [1 0 0] [1 0 0] [1 0 0]
. [1 0 0] [0 1 0] [0 0 1]
. [0 1 1] [0 0 2] [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
Cf.
A000219,
A007716,
A007718,
A056156,
A059201,
A316980,
A316983,
A318795,
A319560,
A319616-
A319646,
A300913.
-
(* See A318795 for M[m, n, k]. *)
T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
-
\\ See A318795 for M.
a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
-
\\ See A340652 for G.
seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024
A026007
Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.
Original entry on oeis.org
1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0
For n = 4, we have 8 partitions
01: [4]
02: [4']
03: [4'']
04: [4''']
05: [3, 1]
06: [3', 1]
07: [3'', 1]
08: [2, 2']
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.
-
with(numtheory):
b:= proc(n) option remember;
add((-1)^(n/d+1)*d^2, d=divisors(n))
end:
a:= proc(n) option remember;
`if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..45); # Alois P. Heinz, Aug 03 2013
-
a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
-
N=66; q='q+O('q^N);
gf= prod(n=1,N, (1+q^n)^n );
Vec(gf)
/* Joerg Arndt, Oct 06 2012 */
A000569
Number of graphical partitions of 2n.
Original entry on oeis.org
1, 2, 5, 9, 17, 31, 54, 90, 151, 244, 387, 607, 933, 1420, 2136, 3173, 4657, 6799, 9803, 14048, 19956, 28179, 39467, 54996, 76104, 104802, 143481, 195485, 264941, 357635, 480408, 642723, 856398, 1136715, 1503172, 1980785
Offset: 1
a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 17 graphical partitions:
(11) (211) (222) (2222) (3322)
(1111) (2211) (3221) (22222)
(3111) (22211) (32221)
(21111) (32111) (33211)
(111111) (41111) (42211)
(221111) (222211)
(311111) (322111)
(2111111) (331111)
(11111111) (421111)
(511111)
(2221111)
(3211111)
(4111111)
(22111111)
(31111111)
(211111111)
(1111111111)
(End)
- T. D. Noe, Table of n, a(n) for n = 1..860. [Terms 1 through 110 were computed by Tiffany M. Barnes and Carla D. Savage; terms 111 through 585 were computed by Axel Kohnert; terms 586 to 860 by Wang Kai, Jun 05 2016; a typo of a(547) in Number of Graphical Partitions is corrected by Wang Kai, Aug 03 2016]
- Tiffany M. Barnes and Carla D. Savage, Efficient generation of graphical partitions Discrete Appl. Math. 78 (1997), no. 1-3, 17-26.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
- P. Erdős and T. Gallai, Graphs with a given degree of vertices, Mat. Lapok, 11 (1960), 264-274.
- P. Erdős and L. B. Richmond, On graphical partitions Combinatorica 13 (1993), no. 1, 57-63.
- Axel Kohnert, Dominance Order and Graphical Partitions, Electronic J. Combinatorics, 11 (2004).
- Gerard Sierksma and Han Hoogeveen, Seven criteria for integer sequences being graphic, J. Graph Theory 15 (1991), no. 2, 223-231.
- Eric Weisstein's World of Mathematics, Graphical partition.
- Gus Wiseman, Simple graphs realizing each of the a(6) = 31 graphical partitions of 12.
- Index entries for sequences related to graphical partitions
Cf.
A000070,
A000219,
A004250,
A004251,
A007717,
A025065,
A029889,
A095268,
A096373,
A147878,
A209816,
A320911,
A320921,
A320922.
-
<< MathWorld`Graphs`
Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
(* second program *)
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)
A120733
Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
Original entry on oeis.org
1, 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161, 3581539973, 82171451025, 2055919433081, 55710251353953, 1625385528173693, 50800411296363617, 1693351638586070209, 59966271207156833313, 2248276994650395873861, 88969158875611127548481
Offset: 0
a(2) = 5:
[1 0] [0 1] [1] [1 1] [2]
[0 1] [1 0] [1]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 33 matrices:
[3][21][12][111]
.
[2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
[1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
.
[1][10][10][10][100][100][01][01][010][01][010][001][001]
[1][10][01][01][010][001][10][10][100][01][001][100][010]
[1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Sara C. Billey, M. Konvalinka, T. K. Petersen, W. Slofstra, and B. E. Tenner, Parabolic double cosets in Coxeter groups, Discrete Mathematics and Theoretical Computer Science, Submitted, 2016.
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts See IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, page 436, Springer, Berlin.
- Giulio Cerbai and Anders Claesson, Caylerian polynomials, arXiv:2310.01270 [math.CO], 2023. Mentions this sequence.
- Giulio Cerbai and Anders Claesson, Enumerative aspects of Caylerian polynomials, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
- P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, Discrete probability and algorithms (Minneapolis, MN, 1993), 15-41, IMA Vol. Math. Appl., 72, Springer, New York, 1995.
- G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras, arXiv:math/0105065 [math.CO], 2001; Internat. J. Alg. Comp. 12 (2002), 671-717.
- Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, Matrix symmetric and quasi-symmetric functions and noncommutative representation theory, arXiv:2503.14417 [math.CO], 2025. See p. 11.
- Masato Kobayashi, Construction of double coset system of a Coxeter group and its applications to Bruhat graphs, arXiv:1907.11801 [math.CO], 2019.
- Vaclav Kotesovec, Asymptotics of the sequence A120733
- E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8, Remark 30.
- T. K. Petersen, A two-sided analogue of the Coxeter complex, arXiv:1607.00086 [math.CO], (2016).
-
t1 := M -> add( add( add( (-1)^(n-j)*binomial(n, j)*((1-x)^(-j)-1)^m, j=0..n), n=0..M), m=0..M); s := series(t1(20),x,20); gfun[seriestolist](%); # N. J. A. Sloane, Jan 14 2009
-
a[n_] := Sum[2^(-2-r-s)*Binomial[n+r*s-1, n], {r, 0, Infinity}, {s, 0, Infinity}]; Table[Print[an = a[n]]; an, {n, 0, 19}] (* Jean-François Alcover, May 15 2012, after Vladeta Jovovic *)
Flatten[{1,Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n,k]*Sum[m!*StirlingS2[k, m],{m,k}]^2,{k,n}],{n,20}]}] (* Vaclav Kotesovec, May 07 2014 *)
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
A100883
Number of partitions of n in which the sequence of frequencies of the summands is nondecreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 11, 13, 19, 26, 36, 43, 64, 77, 102, 129, 169, 205, 268, 323, 413, 504, 629, 751, 947, 1131, 1384, 1661, 2024, 2393, 2919, 3442, 4136, 4884, 5834, 6836, 8162, 9531, 11262, 13155, 15493, 17981, 21138, 24472, 28571, 33066, 38475, 44305
Offset: 0
a(5) = 6 because, of the 7 unrestricted partitions of 5, only one, 2 + 2 + 1, has a decreasing sequence of frequencies. Two is used twice, but 1 is used only once.
-
b:= proc(n, i, t) option remember; `if`(n<0, 0, `if`(n=0, 1,
`if`(i=1, `if`(n>=t, 1, 0), `if`(i=0, 0, b(n, i-1, t)+
add(b(n-i*j, i-1, j), j=t..floor(n/i))))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..60); # Alois P. Heinz, Jul 03 2014
-
b[n_, i_, t_] := b[n, i, t] = If[n<0, 0, If[n == 0, 1, If[i == 1, If[n >= t, 1, 0], If[i == 0, 0, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t, Floor[n/i]}]]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],OrderedQ[Length/@Split[#]]&]],{n,20}] (* Gus Wiseman, Jan 21 2019 *)
A156616
G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.
Original entry on oeis.org
1, 2, 6, 16, 38, 88, 196, 420, 878, 1794, 3584, 7032, 13572, 25792, 48352, 89512, 163774, 296444, 531234, 943072, 1659560, 2896376, 5015700, 8622108, 14718652, 24960138, 42062200, 70458160, 117349856, 194381704, 320295312, 525123604
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
- Ali H. Al-Saedi, Congruences for restricted plane overpartitions modulo 4 and 8, Raman. J. 48 (2) (2019) 251
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.
- Mirjana Vuletic, A generalization of MacMahon's formula, Trans. Am. Math. Soc. 361 (2009) 2789-2804.
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
-
{a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, May 01 2010
A006330
Number of corners, or planar partitions of n with only one row and one column.
Original entry on oeis.org
1, 1, 3, 6, 12, 21, 38, 63, 106, 170, 272, 422, 653, 986, 1482, 2191, 3218, 4666, 6726, 9592, 13602, 19122, 26733, 37102, 51232, 70292, 95989, 130356, 176246, 237120, 317724, 423840, 563266, 745562, 983384, 1292333, 1692790, 2209886, 2876132
Offset: 0
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(4)=12 unimodal compositions of 4+1=5 where the maximal part appears once:
01: [ 1 1 1 2 ]
02: [ 1 1 2 1 ]
03: [ 1 1 3 ]
04: [ 1 2 1 1 ]
05: [ 1 3 1 ]
06: [ 1 4 ]
07: [ 2 1 1 1 ]
08: [ 2 3 ]
09: [ 3 1 1 ]
10: [ 3 2 ]
11: [ 4 1 ]
12: [ 5 ]
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 21*x^5 + 38*x^6 + 63*x^7 + 106*x^8 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see page 77.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- G. E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573. See (5.6).
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
- Shouvik Datta, M. R. Gaberdiel, W. Li, C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295.
- G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
- G. Kreweras, Letter to N. J. A. Sloane
-
a[0] = 1; a[n_] := SeriesCoefficient[ Sum[x^k/Product[1 - x^i, {i, 1, k}]^2, {k, 1, n}] + 1, {x, 0, n}]; Array[a, 39, 0] (* Jean-François Alcover, Mar 13 2014 *)
-
{a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / prod(i=1, k, 1 - x^i, 1 + x*O(x^n))^2, 1), n))};
-
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) - 1)\2, (-1)^k * x^((k + k^2)/2)) / eta(x + x*O(x^n))^2, n))};
A000294
Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).
Original entry on oeis.org
1, 1, 4, 10, 26, 59, 141, 310, 692, 1483, 3162, 6583, 13602, 27613, 55579, 110445, 217554, 424148, 820294, 1572647, 2992892, 5652954, 10605608, 19765082, 36609945, 67405569, 123412204, 224728451, 407119735, 733878402, 1316631730, 2351322765, 4180714647, 7401898452, 13051476707, 22922301583, 40105025130, 69909106888, 121427077241, 210179991927, 362583131144
Offset: 0
- R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139.
- V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alimzhan Amanov and Damir Yeliussizov, MacMahon's statistics on higher-dimensional partitions, arXiv:2009.00592 [math.CO], 2020. Mentions this sequence.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
- R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139. [Annotated scanned copy]
- Nicolas Destainville and Suresh Govindarajan, Estimating the asymptotics of solid partitions, J. Stat. Phys. 158 (2015) 950-967; arXiv:1406.5605 [cond-mat.stat-mech], 2014.
- Steven Finch, Integer Partitions, September 22, 2004, page 2. [Cached copy, with permission of the author]
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer, J. Phys. A 36 (2003), no. 24, 6651-6659; arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003.
- V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314. [Annotated scanned copy]
- Damir Yeliussizov, Bounds on the number of higher-dimensional partitions, arXiv:2302.04799 [math.CO], 2023.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> n*(n+1)/2): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
-
a[0] = 1; a[n_] := a[n] = 1/(2*n)*Sum[(DivisorSigma[2, k]+DivisorSigma[3, k])*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2014, after Vladeta Jovovic *)
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)/2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 11 2015 *)
-
a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^3/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: binomial(n+1, 2))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
Comments