cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 261 results. Next

A002875 Sorting numbers (see Motzkin article for details).

Original entry on oeis.org

1, 2, 4, 24, 128, 880, 7440
Offset: 0

Views

Author

Keywords

Comments

How is the sequence defined (see the links in A000262)? Also more terms would be welcome.
Based on the Motzkin article, where this sequence appears in the last row of the table on p. 173, one would expect that this sequence is the same as A294202. However, they seem to be unrelated. So the true definition of this sequence is a mystery. - Andrew Howroyd and Andrey Zabolotskiy, Oct 25 2017

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A086885 Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons.

Original entry on oeis.org

2, 3, 7, 4, 13, 34, 5, 21, 73, 209, 6, 31, 136, 501, 1546, 7, 43, 229, 1045, 4051, 13327, 8, 57, 358, 1961, 9276, 37633, 130922, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114, 11, 111, 1021, 8501
Offset: 1

Views

Author

Hugo Pfoertner, Aug 22 2003

Keywords

Comments

Compare with A088699. - Peter Bala, Sep 17 2008
T(m, n) gives the number of matchings in the complete bipartite graph K_{m,n}. - Eric W. Weisstein, Apr 25 2017

Examples

			One person:
T(1,1)=a(1)=2: 0,1 (seat empty or occupied);
T(2,1)=a(2)=3: 00,10,01 (both seats empty, left seat occupied, right seat occupied).
Two persons:
T(2,2)=a(3)=7: 00,10,01,20,02,12,21;
T(3,2)=a(5)=13: 000,100,010,001,200,020,002,120,102,012,210,201,021.
Triangle starts:
  2;
  3  7;
  4 13  34;
  5 21  73 209;
  6 31 136 501 1546;
  ...
		

Crossrefs

Diagonal: A002720, first subdiagonal: A000262, 2nd subdiagonal: A052852, 3rd subdiagonal: A062147, 4th subdiagonal: A062266, 5th subdiagonal: A062192, 2nd row/column: A002061. With column 0: A176120.

Programs

  • Magma
    [Factorial(k)*Evaluate(LaguerrePolynomial(k, n-k), -1): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    A086885 := proc(n,k)
        add( binomial(n,j)*binomial(k,j)*j!,j=0..min(n,k)) ;
    end proc: # R. J. Mathar, Dec 19 2014
  • Mathematica
    Table[Table[Sum[k! Binomial[n, k] Binomial[j, k], {k, 0, j}], {j, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Jul 09 2015 *)
    Table[m! LaguerreL[m, n - m, -1], {n, 10}, {m, n}] // Flatten (* Eric W. Weisstein, Apr 25 2017 *)
  • PARI
    T(i, j) = j!*pollaguerre(j, i-j, -1); \\ Michel Marcus, Feb 23 2021
  • Sage
    flatten([[factorial(k)*gen_laguerre(k, n-k, -1) for k in [1..n]] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
    

Formula

a(n) = T(i, j) with n=(i*(i-1))/2+j; T(i, 1)=i+1, T(i, j)=T(i, j-1)+i*T(i-1, j-1) for j>1.
The role of seats and persons may be interchanged, so T(i, j)=T(j, i).
T(i, j) = j!*LaguerreL(j, i-j, -1). - Vladeta Jovovic, Aug 25 2003
T(i, j) = Sum_{k=0..j} k!*binomial(i, k)*binomial(j, k). - Vladeta Jovovic, Aug 25 2003

A089231 Triangular array A066667 or A008297 unsigned and transposed.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 36, 24, 1, 20, 120, 240, 120, 1, 30, 300, 1200, 1800, 720, 1, 42, 630, 4200, 12600, 15120, 5040, 1, 56, 1176, 11760, 58800, 141120, 141120, 40320, 1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880
Offset: 1

Views

Author

Philippe Deléham, Dec 10 2003

Keywords

Comments

Row sums: A000262.
T(n, k) is also the number of nilpotent partial one-one bijections (of an n-element set) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Sep 14 2008
T(n, k) is also the number of acyclic directed graphs on n labeled nodes with k-1 edges with all indegrees and outdegrees at most 1. - Felix A. Pahl, Dec 25 2012
For n > 1, the n-th derivative of exp(1/x) is of the form (exp(1/x)/x^(2*n))*(P(n-1,x)) where P(n-1,x) is a polynomial of degree n-1 with n terms. The term of degree k in P(n-1,x) has a coefficient given by T(n-1,k). Example: The third derivative of exp(1/x) is (exp(1/x)/x^6)*(1+6x+6x^2) and the 3rd row of this triangle is 1, 6, 6, which corresponds to this coefficients of the polynomial 1+6x+6x^2. - Derek Orr, Nov 06 2014
For another context for this array see the Callan (2008) article. - Ron L.J. van den Burg, Dec 12 2021

Examples

			1;
1,  2;
1,  6,    6;
1, 12,   36,    24;
1, 20,  120,   240,    120;
1, 30,  300,  1200,   1800,    720;
1, 42,  630,  4200,  12600,  15120,    5040;
1, 56, 1176, 11760,  58800, 141120,  141120,   40320;
1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880;
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 203.

Crossrefs

Cf. A000262 (row sums), A008297, A066667, A144084, row mirror of A105278.

Programs

  • Maple
    P := n -> simplify(hypergeom([-n,-n+1],[],1/t));
    seq(print(seq(coeff(expand(t^k*P(k)),t,k-j+1),j=1..k)),k=1..n); # Peter Luschny, Oct 29 2014
  • Mathematica
    Table[(Binomial[n - 1, k - 1] Binomial[n, k - 1]/k) k!, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n,k)/(n-k+1)!, ", ");); print(););} \\ Michel Marcus, Jan 12 2016

Formula

T(n, k) = A001263(n, k)*k!; A001263 = triangle of Narayana.
T(n, k) = C(n, n-k+1)*(n-1)!/(n-k)! = Sum_{i=n-k+1..n} |S1(n, i)*S2(i, n-k+1)| , with S1, S2 the Stirling numbers.
From Derek Orr, Mar 12 2015: (Start)
Each row represents a polynomial:
P(1,x) = 1;
P(2,x) = 1 + 2x;
P(3,x) = 1 + 6x + 6x^2;
P(4,x) = 1 + 12x + 36x^2 + 24x^3;
...
They are related through P(n+1,x) = x^2*P'(n,x) - (1+2*n*x)*P(n,x) with P(1,x) = 1.
(End)
From Peter Bala, Jul 04 2016: (Start)
Working with an offset of 0:
G.f.: exp(x*t)*I_1(2*sqrt(x)) = 1 + (1 + 2*t)*x/(1!*2!) + (1 + 6*t + 6*t^2)*x^2/(2!*3!) + (1 + 12*t + 36*t^2 + 24*t^3)*x^3/(3!*4!) + ..., where I_1(x) = Sum_{n >= 0} (x/2)^(2*n)/(n!*(n+1)!) is a modified Bessel function of the first kind.
The row polynomials R(n,t) satisfy R(n,t + u) = Sum_{k = 0..n} T(n,k)*t^k*R(n-k,u).
R(n,t) = 1 + Sum_{k = 0..n-1} (-1)^(n-k+1)*(n+1)!/(k+1)!* binomial(n,k)*t^(n-k)*R(k,t). Cf. A144084. (End)
From Peter Bala, Oct 05 2019: (Start)
The following formulas use a column index k starting at 0:
E.g.f.: exp(x/(1 - t*x)) - 1 = x + (1 + 2*t)*x^2/2! + (1 + 6*t + 6*t^2)*x^3/3! + ....
Recurrence for row polynomials: R(n+1,t) = (1 + 2*n*t)R(n,t) - n*(n-1)*t^2*R(n-1,t), with R(1,t) = 1 and R(2,t) = 1 + 2*t.
R(n+1,t) equals the numerator polynomial of the finite continued fraction 1 + n*t/(1 + n*t/(1 + (n-1)*t/(1 + (n-1)*t/(1 + ... + 2*t/(1 + 2*t/(1 + t/(1 + t/(1)))))))). The denominator polynomial is the n-th row polynomial of A144084. (End)
T(n,k) = A105278(n,n-k). - Ron L.J. van den Burg, Dec 12 2021

Extensions

StackExchange link added by Felix A. Pahl, Dec 25 2012

A201203 Alternating row sums of triangle A201201: first associated monic Laguerre-Sonin(e) polynomials with parameter alpha=1 evaluated at x=-1.

Original entry on oeis.org

1, -5, 29, -201, 1631, -15173, 159093, -1854893, 23788271, -332613321, 5033396573, -81929955953, 1426898945343, -26468817431501, 520884561854501, -10836674357638293, 237603001692915983, -5475288709200573713, 132276033079845108621
Offset: 0

Views

Author

Wolfdieter Lang, Dec 06 2011

Keywords

Crossrefs

Cf. A201201, A201202 (row sums), A073003, A002793.

Programs

  • Maple
    A201203 := proc(n)
        add((-1)^k*A201201(n,k),k=0..n) ;
    end proc:
    seq(A201203(n),n=0..20) ; # R. J. Mathar, Dec 07 2011
  • Mathematica
    Flatten[{1,RecurrenceTable[{n*(1+n)*a[-2+n]+(3+2*n)*a[-1+n] +a[n]==0, a[1]==-5,a[2]==29}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 19 2013 *)

Formula

a(n) = Sum_{k=0..n} ((-1)^k)*A201201(n,k), n>=0.
a(n)+(2*n+3)*a(n-1)+n*(n+1)*a(n-2)=0, a(-1)=0, a(0)=1. - R. J. Mathar, Dec 07 2011
From Wolfdieter Lang, Dec 11 2011: (Start)
E.g.f. from A201201 with x=-1, z->x: g(x) = exp(1/(1+x))*(3+2*x)*(exp(-1) + (Ei(1,1/(1+x))-Ei(1,1)))/(1+x)^4-(2+x)/(1+x)^3, with the exponential integral Ei.
This e.g.f. satisfies the homogeneous ordinary second-order differential equation (1+x)^2*(d^2(g(x))/dx^2) + (7+6*x)*(d(g(x))/dx)+6*g(x), with g(0)=1 and (d(g(x))/dx){x=0} = -5. This is equivalent to the recurrence conjectured above by _R. J. Mathar, which is thus proved.
(End)
Let G denote Gompertz's constant A073003. The unsigned sequence is the sequence of numerators in the convergents coming from the infinite continued fraction expansion 1 - G = 1/(3 - 2/(5 - 6/(7 - ... - n*(n+1)/((2*n+3) - ...)))). The sequence of convergents begins [1/3, 5/13, 29/73, 201/501, ...]. The denominators are in A000262. - Peter Bala, Aug 19 2013
a(n) ~ (-1)^n * 2^(-1/2)*(exp(-1)-Ei(1,1)) * exp(2*sqrt(n)-n+1/2) * n^(n+7/4) * (1+91/(48*sqrt(n))), where Ei(1,1) = 0.21938393439552... = G / exp(1), where G = 0.596347362323194... is the Gompertz constant (see A073003). - Vaclav Kotesovec, Oct 19 2013

Extensions

R. J. Mathar conjecture corrected and proved by Wolfdieter Lang, Dec 11 2011

A293012 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1 - x)^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 31, 73, 1, 1, 1, 9, 55, 241, 501, 1, 1, 1, 11, 85, 529, 2261, 4051, 1, 1, 1, 13, 121, 961, 6121, 24781, 37633, 1, 1, 1, 15, 163, 1561, 13041, 82711, 309835, 394353, 1, 1, 1, 17, 211, 2353, 24101, 207001, 1273567, 4342241, 4596553, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 28 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) =  1 + x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 9*k + 1)*x^3/3! + (4*k^3 + 36*k^2 + 32*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  1,   1,    1,    1,     1,     1,  ...
  1,   3,    5,    7,     9,    11,  ...
  1,  13,   31,   55,    85,   121,  ...
  1,  73,  241,  529,   961,  1561,  ...
  1, 501, 2261, 6121, 13041, 24101,  ...
		

Crossrefs

Columns k=0..4 give A000012, A000262, A082579, A091695, A361283.
Main diagonal gives A293013.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x/(1 - x)^k], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j-1, n-j)/j!); \\ Seiichi Manyama, Mar 06 2023

Formula

E.g.f. of column k: exp(x/(1 - x)^k).
From Seiichi Manyama, Oct 21 2017: (Start)
Let B(j,k) = (-1)^(j-1)*binomial(-k,j-1) for j>0 and k>=0.
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0. (End)
A(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j-1,n-j)/j!. - Seiichi Manyama, Mar 06 2023

A001039 a(n) = (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 781, 137257, 28531167061, 25239592216021, 51702516367896047761, 109912203092239643840221, 949112181811268728834319677753, 91703076898614683377208150526107718802981
Offset: 1

Views

Author

Keywords

Comments

From Luis H. Gallardo, May 27 2022: (Start)
Let r be a root of the trinomial x^p-x-1 in a fixed algebraic closure F of the finite field F_p. Radoux conjectured in 1975 (see References) that a(n) equals the multiplicative order of r in F. The conjecture seems still open.
Moreover, S. Mattarei proved in 2002 that there exists a finite-dimensional non-nilpotent Lie algebra of characteristic p which admits a nonsingular derivation of order a(n) if p is odd and of order 73 if p = 2. (End)

References

  • S. Mattarei, The orders of nonsingular derivations of modular Lie algebras, Isr. J. Math., 132 (2002), 265-275.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de F_p. C.R. Acad. Sci. Paris Ser. A-B, 281(21) (1975) A879-A882.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    for i from 1 to 20 do printf(`%d,`,(ithprime(i)^ithprime(i) -1)/(ithprime(i)-1)) od:
  • Mathematica
    Table[(Prime[n]^Prime[n] - 1)/(Prime[n] - 1), {n, 1, 10}]
    (#^#-1)/(#-1)&/@Prime[Range[10]] (* Harvey P. Dale, Apr 09 2016 *)

Extensions

More terms from James Sellers, Jul 10 2000

A049118 Row sums of triangle A035342 and array A134144.

Original entry on oeis.org

1, 4, 25, 211, 2236, 28471, 422899, 7173580, 136750051, 2893057381, 67241818876, 1702829138209, 46659181547785, 1375237342827076, 43380198327693361, 1458027134026128691, 52014149849253158284, 1962794208713975883415
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j+k-1, k-1]*Binomial[2*n-j-k-1, n-1], {j, 0, n-k}]; a[n_] := Sum[a[n, k], {k, 1, n}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jul 05 2013, after Emanuele Munarini *)
    Table[Sum[BellY[n, k, (2 Range[n] - 1)!!], {k, n}], {n, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • Maxima
    a(n,k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1, k-1)*binomial(2*n-j-k-1, n-1), j, 0, n-k); makelist(sum(a(n,k),k,0,n),n,1,12); /* Emanuele Munarini, Jun 01 2012 */

Formula

E.g.f. exp(-1+1/sqrt(1-2*x))-1.
Representation of a(n) as n-th moment of a positive function on (0, infinity): a(n)=int(x^n* (x/2)^(-1/2)*exp(-x/2)*(2*hypergeom([], [3/2, 1/2], 1/8*x)/Pi^(1/2)+1/2*sqrt(2)*sqrt(x)*hypergeom([], [2, 3/2], 1/8*x))/(4*exp(1)), x=0..infinity), n=1, 2, ... - Karol A. Penson, Jun 27 2002
Asymptotic expansion for large n: a(n) -> 2^(1/6)*(n^(-1/3) + 2^(-7/3)*n^(-2/3) + O(1/n))*(2*n)^n*exp(-n+(3/2)*(2*n)^(1/3))/(sqrt(3)*exp(1)); (the nature of this approximation of a(n) is the same as that of Stirling approximation of n!). - Karol A. Penson, Sep 02 2002
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A000110, A000262, A049119 and A049120. - Peter Bala, Nov 25 2011

A084357 Number of sets of sets of lists.

Original entry on oeis.org

1, 1, 4, 23, 171, 1552, 16583, 203443, 2813660, 43258011, 731183365, 13466814110, 268270250977, 5744515120489, 131525839441428, 3205279987587275, 82812074976214547, 2260364854328771548, 64979726427408468055, 1961976154991285214707, 62065551492895731512852
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2003

Keywords

Comments

In the book by Flajolet and Sedgewick on page 139 incorrectly gives a(5) = 1542. - Vaclav Kotesovec, Jul 11 2020

References

  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.

Crossrefs

Row sums of A079005 and row sums of A088814.

Programs

  • Maple
    with(combstruct); SetSetSeqL := [T, {T=Set(S), S=Set(U,card >= 1), U=Sequence(Z,card >=1)},labeled]; [seq(count(%,size=j),j=1..12)];
  • Mathematica
    a[n_] = Sum[ n!/k!*Binomial[n-1, k-1]*BellB[k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0]
    (* Jean-François Alcover, Jun 22 2011, after Vladeta Jovovic *)

Formula

E.g.f.: exp(exp(x/(1-x))-1). Lah transform of Bell numbers: Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*Bell(k). - Vladeta Jovovic, Sep 28 2003

A084358 Lists of sets of lists.

Original entry on oeis.org

1, 1, 5, 37, 363, 4441, 65133, 1114009, 21771851, 478658101, 11692343253, 314170940293, 9209104364331, 292435635165649, 10000637145321917, 366427621403088433, 14321135069200849515, 594696814358067968461, 26147933188037724372069
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2003

Keywords

Comments

This sequence and -A000262 with the first term set to 1 form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 21 2007

References

  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(2-Exp(x/(1-x))))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 16 2018
  • Maple
    with(combstruct); SeqSetSeqL := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Sequence(Z,card >=1)},labeled]; [seq(count(%,size=j),j=1..12)];
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(2-Exp[x/(1-x)]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 16 2013 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(2-exp(x/(1-x))))) \\ G. C. Greubel, May 16 2018
    

Formula

a(n) = n!*Lag{n,(.)!*Lag[.,P(.,2),0],-1} = P(n,2) - n*P(n-1,2) umbrally, where P(j,t) are the polynomials in A131758 and Lag(n,x,a) are the associated Laguerre polynomials of order a; that is, the sequence is given by an iterated combinatorial Laguerre transform, of mixed order, of a set of polynomials related to the polylogarithms, which reduces to a simple finite difference. - Tom Copeland, Sep 30 2007
E.g.f.: 1/(2-exp(x/(1-x))). Lah transform of preferential arrangements: Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*A000670(k). - Vladeta Jovovic, Sep 28 2003
a(n) ~ n! * (1+log(2))^(n-1) / (2*(log(2))^(n+1)). - Vaclav Kotesovec, Oct 08 2013

A103194 LAH transform of squares.

Original entry on oeis.org

0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977, 589410910, 9064804551, 149641946796, 2638693215769, 49490245341642, 983607047803815, 20646947498718736, 456392479671188001, 10595402429677269174, 257723100178182605287, 6553958557721713088820
Offset: 0

Views

Author

Vladeta Jovovic, Mar 18 2005

Keywords

Comments

If the e.g.f. of b(n) is E(x) and a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*b(k), then the e.g.f. of a(n) is E(x/(1-x))/(1-x). - Vladeta Jovovic, Apr 16 2005
a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are in a cycle. A fixed point is considered to be in a cycle. a(n) = Sum_{k=0..n} A206703(n,k)*k. - Geoffrey Critzer, Feb 11 2012
a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are undefined, i.e., they do not have an image.- Geoffrey Critzer, Feb 09 2022
a(n) is the total length of all increasing subsequences over all n-permutations. Cf. A002720. - Geoffrey Critzer, Feb 09 2022

Crossrefs

Programs

  • Maple
    with(combstruct): SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card=1)}, labeled]: seq(k*count(SetSeqSetL, size=k), k=0..18); # Zerinvary Lajos, Jun 06 2007
    a := n -> n!*hypergeom([2, 1-n], [1, 1], -1):
    seq(simplify(a(n)),n=0..20); # Peter Luschny, Mar 30 2015
  • Mathematica
    nn = 20; a = 1/(1 - x); ay = 1/(1 - y x); D[Range[0, nn]! CoefficientList[ Series[Exp[a x] ay, {x, 0, nn}], x], y] /. y -> 1  (* Geoffrey Critzer, Feb 11 2012 *)

Formula

a(n) = Sum_{k=0..n} (n!/k!)*binomial(n-1, k-1)*k^2.
E.g.f.: x/(1-x)^2*exp(x/(1-x)).
Recurrence: (n-1)*a(n) - n*(2*n-1)*a(n-1) + n*(n-1)^2*a(n-2) = 0.
a(n) = n*A000262(n). - Vladeta Jovovic, Mar 20 2005
a(n) ~ n! * exp(-1/2 + 2*sqrt(n))*n^(1/4)/(2*sqrt(Pi)). - Vaclav Kotesovec, Aug 13 2013
a(n) = n!*hypergeom([2, 1-n], [1, 1], -1). - Peter Luschny, Mar 30 2015
a(n) = Sum_{k=1..n} k*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jun 17 2025
Previous Showing 91-100 of 261 results. Next