A127984
a(n) = (n/3 + 7/9)*2^(n - 1) + (-1)^n/9.
Original entry on oeis.org
1, 3, 7, 17, 39, 89, 199, 441, 967, 2105, 4551, 9785, 20935, 44601, 94663, 200249, 422343, 888377, 1864135, 3903033, 8155591, 17010233, 35418567, 73633337, 152859079, 316902969, 656175559, 1357090361, 2803659207, 5786275385, 11930464711, 24576757305
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, J. Th. des Nombres de Bordeaux Vol.13, Fasc. 1, 2001.
- Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Cf.
A059570,
A073371,
A127976,
A127978,
A127979,
A127980,
A127981,
A127982,
A127983,
A073371,
A000337,
A172481.
-
[(n/3+7/9)*2^(n-1)+(-1)^n/9: n in [1..35]]; // Vincenzo Librandi, Jun 15 2017
-
A127984:=n->(n/3 + 7/9)*2^(n - 1) + (-1)^n/9; seq(A127984(n), n=1..50); # Wesley Ivan Hurt, Mar 14 2014
-
Table[(n/3 + 7/9)2^(n - 1) + (-1)^n/9, {n, 50}] (* Artur Jasinski *)
CoefficientList[Series[(1 - 2 x^2) / ((-1 + 2 x)^2 (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 15 2017 *)
A193844
Triangular array: the fission of ((x+1)^n) by ((x+1)^n); i.e., the self-fission of Pascal's triangle.
Original entry on oeis.org
1, 1, 3, 1, 5, 7, 1, 7, 17, 15, 1, 9, 31, 49, 31, 1, 11, 49, 111, 129, 63, 1, 13, 71, 209, 351, 321, 127, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023
Offset: 0
First six rows:
1
1....3
1....5....7
1....7....17....15
1....9....31....49....31
1....11...49....111...129...63
- Jean-François Chamayou, A Random Difference Equation with Dufresne Variables revisited, arXiv:1410.1708 [math.PR], 2014.
- R. Coquereaux and E. Ragoucy, Currents on Grassmann algebras, J. of Geometry and Physics, 1995, Vol 15, pp 333-352.
- R. Coquereaux and E. Ragoucy, Currents on Grassmann algebras, arXiv:hep-th/9310147, 1993.
- C. Kassel, A Künneth formula for the cyclic cohomology of Z2-graded algebras, Math. Ann. 275 (1986) 683.
Columns, diagonals:
A000225,
A000337,
A055580,
A027608,
A211386,
A211388,
A000012,
A005408,
A056220,
A199899.
A145661 is an essentially identical triangle.
-
A193844 := (n,k) -> 2^k*binomial(n+1,k)*hypergeom([1,-k],[-k+n+2],1/2);
for n from 0 to 5 do seq(round(evalf(A193844(n,k))),k=0..n) od; # Peter Luschny, Jul 23 2014
# Alternatively
p := (n,x) -> add(x^k*(1+2*x)^(n-k), k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
-
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (x + 1)^n
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193844 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193845 *)
-
# uses[fission from A193842]
p = lambda n,x: (x+1)^n
A193844_row = lambda n: fission(p, p, n)
for n in range(7): print(A193844_row(n)) # Peter Luschny, Jul 23 2014
A066185
Sum of the first moments of all partitions of n with weights starting at 0.
Original entry on oeis.org
0, 0, 1, 4, 12, 26, 57, 103, 191, 320, 537, 843, 1342, 2015, 3048, 4457, 6509, 9250, 13170, 18316, 25483, 34853, 47556, 64017, 86063, 114285, 151462, 198871, 260426, 338275, 438437, 564131, 724202, 924108, 1176201, 1489237, 1881273, 2365079, 2966620, 3705799
Offset: 0
a(3)=4 because the first moments of all partitions of 3 are {3}.{0},{2,1}.{0,1} and {1,1,1}.{0,1,2}, resulting in 0,1,3; summing to 4.
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0],
b(n, i-1)+(h-> h+[0, h[1]*i*(i-1)/2])(b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 29 2014
-
Table[ Plus@@ Map[ #.Range[ 0, -1+Length[ # ] ]&, IntegerPartitions[ n ] ], {n, 40} ]
b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], b[n, i-1] + Function[h, h+{0, h[[1]]*i*(i-1)/2}][b[n-i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)
A102301
a(n) = ((3*n + 1)*2^(n+3) + 9 + (-1)^n)/18.
Original entry on oeis.org
1, 4, 13, 36, 93, 228, 541, 1252, 2845, 6372, 14109, 30948, 67357, 145636, 313117, 669924, 1427229, 3029220, 6407965, 13514980, 28428061, 59652324, 124897053, 260978916, 544327453, 1133394148, 2356266781, 4891490532, 10140895005, 20997617892, 43426891549
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- T. Etzion, On the stopping redundancy of Reed-Muller codes, IEEE Trans. Information Theory 52 (11) (2006) 4867-4879, also, arXiv:cs/0511056 [cs.IT], 2005.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,4).
-
[((3*n+1)*2^(n+3)+9+(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Nov 21 2018
-
Table[((3n+1)*2^(n+3) + 9 + (-1)^n)/18, {n,0,50}] (* G. C. Greubel, Sep 27 2017 *)
LinearRecurrence[{4, -3, -4, 4}, {1, 4, 13, 36}, 50] (* Vincenzo Librandi, Nov 21 2018 *)
-
a(n)=((3*n+1)*2^(n+3)+9+(-1)^n)/18 \\ Charles R Greathouse IV, Oct 16 2015
A130328
Triangle of differences between powers of 2, read by rows.
Original entry on oeis.org
1, 3, 2, 7, 6, 4, 15, 14, 12, 8, 31, 30, 28, 24, 16, 63, 62, 60, 56, 48, 32, 127, 126, 124, 120, 112, 96, 64, 255, 254, 252, 248, 240, 224, 192, 128, 511, 510, 508, 504, 496, 480, 448, 384, 256
Offset: 0
First few rows of the triangle are;
1;
3, 2;
7, 6, 4;
15, 14, 12, 8;
31, 30, 28, 24, 16;
63, 62, 60, 56, 48, 32;
...
a(5, 2) = 28 because 2^5 = 32, 2^2 = 4 and 32 - 4 = 28.
-
ColumnForm[Table[2^n - 2^k, {n, 15}, {k, 0, n - 1}], Center] (* Alonso del Arte, Mar 13 2008 *)
Original entry on oeis.org
1, 10, 57, 244, 874, 2772, 8054, 21920, 56751, 141326, 341303, 804276, 1858080, 4223784, 9474444, 21018144, 46195149, 100734354, 218190469, 469866964, 1006759110, 2147634364, 4563581746, 9663887808, 20401343003, 42949963286, 90194651043, 188978952404
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-43,104,-155,146,-85,28,-4).
-
a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [10,-43,104,-155, 146,-85,28,-4][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..25); # Alois P. Heinz, Aug 05 2008
-
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 6, k + 6], {k, 0, n}], {n, 1, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
-
Vec(1 / ((1 - x)^6*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Sep 20 2017
A059045
Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 6, 17, 34, 57, 86, 121, 162, 209, ...
1, 10, 49, 142, 313, 586, 985, 1534, 2257, ...
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, ...
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, ...
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
A127717
Triangle read by rows. T(n, k) = k * binomial(n + 1, k + 1), for 1 <= k <= n.
Original entry on oeis.org
1, 3, 2, 6, 8, 3, 10, 20, 15, 4, 15, 40, 45, 24, 5, 21, 70, 105, 84, 35, 6, 28, 112, 210, 224, 140, 48, 7, 36, 168, 378, 504, 420, 216, 63, 8, 45, 240, 630, 1008, 1050, 720, 315, 80, 9, 55, 330, 990, 1848, 2310, 1980, 1155, 440, 99, 10
Offset: 1
First few rows of the triangle:
[1 2 3 4 5 6 7 8 9]
[1] 1;
[2] 3, 2;
[3] 6, 8, 3;
[4] 10, 20, 15, 4;
[5] 15, 40, 45, 24, 5;
[6] 21, 70, 105, 84, 35, 6;
[7] 28, 112, 210, 224, 140, 48, 7;
[8] 36, 168, 378, 504, 420, 216, 63, 8;
[9] 45, 240, 630, 1008, 1050, 720, 315, 80, 9;
...
T(4, 3) = 15 because the size 3 subsets of {1, 2, 3, 4} are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. Adding the largest element from each subset we get 3 + 4 + 4 + 4 = 15. - _Geoffrey Critzer_, Oct 17 2009
-
# Assuming (1,1)-based triangle:
T := (n, k) -> k*binomial(n+1, k+1):
seq(seq(T(n, k), k = 1..n), n = 1..9);
# Assuming (0,0)-based triangle:
gf := 1/((1 - x)*(1 - x - x*y)^2): ser := series(gf, x, 11):
seq(seq(coeff(coeff(ser, x, n), y, k), k=0..n), n=0..9); # Peter Luschny, Jan 07 2023
-
Table[Table[Sum[Binomial[i - 1, k - 1]*i, {i, k, n}], {k, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Oct 17 2009 *)
-
T(n,k) = k*sum(i=0,n-k,binomial(i+k,k))
for(n=1,15,for(k=1,n,print1(T(n,k),", "))) \\ Derek Orr, Oct 30 2014
A127982
a(n) = (n - 1/3)*2^n - n/2 + 1/4 + (-1)^n/12.
Original entry on oeis.org
1, 6, 20, 57, 147, 360, 850, 1959, 4433, 9894, 21840, 47781, 103759, 223908, 480590, 1026723, 2184525, 4631202, 9786700, 20621985, 43341131, 90876576, 190141770, 397060767, 827675977, 1722460830, 3579139400, 7426714269, 15390299463
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, J. Th. des Nombres de Bordeaux Vol.13, Fasc. 1, 2001.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,-1,8,-4).
-
[(n-1/3)*2^n -n/2 +1/4 +(-1)^n/12: n in [1..50]]; // G. C. Greubel, May 08 2018
-
Table[(n-1/3)*2^n -n/2 +1/4 +(-1)^n/12, {n, 1, 50}]
LinearRecurrence[{5,-7,-1,8,-4}, {1,6,20,57,147}, 50] (* G. C. Greubel, May 08 2018 *)
-
a(n) = (n-1/3)*2^n -n/2 +1/4 +(-1)^n/12 \\ G. C. Greubel, May 08 2018
Original entry on oeis.org
1, 3, 1, 7, 5, 1, 15, 17, 7, 1, 31, 49, 31, 9, 1, 63, 129, 111, 49, 11, 1, 127, 321, 351, 209, 71, 13, 1, 255, 769, 1023, 769, 351, 97, 15, 1, 511, 1793, 2815, 2561, 1471, 545, 127, 17, 1, 1023, 4097, 7423, 7937, 5503, 2561, 799, 161, 19, 1
Offset: 0
First six rows:
1
3....1
7....5....1
15...17...7....1
31...49...31...9...1
63...129..111..49..11..1
-
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (x + 1)^n
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193844 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193845 *)
Table[2^k*Binomial[n + 1, k]*Hypergeometric2F1[1, -k, -k + n + 2, 1/2], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Nov 09 2021 *)
-
for(n=0,20,for(k=0,n,print1(1/k!*sum(i=0,n,(2^(i-k)*prod(j=0,k-1,i-j))),", "))) \\ Derek Orr, Oct 14 2014
Comments