A293037
E.g.f.: exp(1 + x - exp(x)).
Original entry on oeis.org
1, 0, -1, -1, 2, 9, 9, -50, -267, -413, 2180, 17731, 50533, -110176, -1966797, -9938669, -8638718, 278475061, 2540956509, 9816860358, -27172288399, -725503033401, -5592543175252, -15823587507881, 168392610536153, 2848115497132448, 20819319685262839
Offset: 0
-
f:= series(exp(1 + x - exp(x)), x= 0, 101): seq(factorial(n) * coeff(f, x, n), n = 0..30); # Muniru A Asiru, Oct 31 2017
# second Maple program:
b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n+1, 1):
seq(a(n), n=0..35); # Alois P. Heinz, Dec 01 2021
-
m = 26; Range[0, m]! * CoefficientList[Series[Exp[1 + x - Exp[x]], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -1], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-exp(x)+1+x)))
-
a(n) = if(n==0, 1, -sum(k=0, n-2, binomial(n-1, k)*a(k))); \\ Seiichi Manyama, Aug 02 2021
A014182
Expansion of e.g.f. exp(1-x-exp(-x)).
Original entry on oeis.org
1, 0, -1, 1, 2, -9, 9, 50, -267, 413, 2180, -17731, 50533, 110176, -1966797, 9938669, -8638718, -278475061, 2540956509, -9816860358, -27172288399, 725503033401, -5592543175252, 15823587507881, 168392610536153, -2848115497132448, 20819319685262839
Offset: 0
G.f. = 1 - x^2 + x^3 + 2*x^4 - 9*x^5 + 9*x^6 + 50*x^7 - 267*x^8 + 413*x^9 + ...
-
With[{nn=30},CoefficientList[Series[Exp[1-x-Exp[-x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 15 2012 *)
a[ n_] := SeriesCoefficient[ (1 - Sum[ k / Pochhammer[ 1/x + 1, k], {k, n}]) / (1 - x), {x, 0, n} ]; (* Michael Somos, Nov 07 2014 *)
-
{a(n)=sum(j=0,n,(-1)^(n-j)*Stirling2(n+1,j+1))}
{Stirling2(n,k)=(1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n)} \\ Paul D. Hanna, Aug 12 2006
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - x - exp( -x + x * O(x^n))), n))} /* Michael Somos, Mar 11 2004 */
-
def A014182_list(len): # len>=1
T = [0]*(len+1); T[1] = 1; R = [1]
for n in (1..len-1):
a,b,c = 1,0,0
for k in range(n,-1,-1):
r = a - k*b - (k+1)*c
if k < n : T[k+2] = u;
a,b,c = T[k-1],a,b
u = r
T[1] = u; R.append(u)
return R
A014182_list(27) # Peter Luschny, Nov 01 2012
A189233
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals upwards, where the e.g.f. of column k is exp(k*(e^x-1)).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 94, 57, 20, 5, 1, 0, 203, 454, 309, 116, 30, 6, 1, 0, 877, 2430, 1866, 756, 205, 42, 7, 1, 0, 4140, 14214, 12351, 5428, 1555, 330, 56, 8, 1, 0, 21147, 89918, 88563, 42356, 12880, 2850, 497, 72, 9, 1
Offset: 0
Square array begins:
A000007 A000110 A001861 A027710 A078944 A144180 A144223 A144263
A000012 1, 1, 1, 1, 1, 1, 1, 1, ...
A001477 0, 1, 2, 3, 4, 5, 6, 7, ...
A002378 0, 2, 6, 12, 20, 30, 42, 56, ...
A033445 0, 5, 22, 57, 116, 205, 330, 497, ...
0, 15, 94, 309, 756, 1555, 2850, 4809, ...
0, 52, 454, 1866, 5428, 12880, 26682, 50134, ...
-
# Cf. also the Maple prog. of Alois P. Heinz in A144223 and A144180.
expnums := proc(k,n) option remember; local j;
`if`(n = 0, 1, (1+add(binomial(n-1,j-1)*expnums(k,n-j), j = 1..n-1))*k) end:
A189233_array := (k, n) -> expnums(k,n):
seq(print(seq(A189233_array(k,n), k = 0..7)), n = 0..5);
A189233_egf := k -> exp(k*(exp(x)-1));
T := (n,k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
seq(lprint(seq(T(n,k), k = 0..7)), n = 0..5):
# alternative Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
-
max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, ] = 1; a[n?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid (* Geoffrey Critzer, Dec 23 2018 *)
-
A(n,k):=if k=0 and n=0 then 1 else if k=0 then 0 else sum(stirling2(n,i)*k^i,i,0,n); /* Vladimir Kruchinin, Apr 12 2019 */
A121867
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives A sequence (cf. A121868).
Original entry on oeis.org
1, 0, -1, -3, -6, -5, 33, 266, 1309, 4905, 11516, -22935, -556875, -4932512, -32889885, -174282151, -612400262, 907955295, 45283256165, 573855673458, 5397236838345, 41604258561397, 250231901787780, 756793798761989, -8425656230853383, -213091420659985440, -2990113204010882473
Offset: 0
From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
...
(End)
-
List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
-
[(&+[(-1)^k*StirlingSecond(n,2*k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
-
# Maple code for A024430, A024429, A121867, A121868.
M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
# Code based on Stirling transform:
stirtr:= proc(p) proc(n) option remember;
add(p(k) *Stirling2(n,k), k=0..n) end
end:
a:= stirtr(n-> (I^n + (-I)^n)/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 29 2011
-
a[n_] := (BellB[n, -I] + BellB[n, I])/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 06 2013, after Alois P. Heinz *)
-
a(n) = sum(k=0,n\2, (-1)^k*stirling(n,2*k,2));
vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
-
[sum((-1)^k*stirling_number2(n,2*k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
A143628
Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(0).
Original entry on oeis.org
1, 0, 0, -1, -6, -25, -89, -280, -700, -380, 13452, 149831, 1214852, 8700263, 57515640, 351296151, 1909757620, 8017484274, 5703377941, -428273438434, -7295220035921, -89868583754993, -970185398785810, -9657428906237364
Offset: 0
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -25 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -89 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
-
# Compare with A143815
#
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
end do:
A143628:=[seq(a[n], n=0..M)];
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n-1, k]*c[k], {k, 0, n-1}]; b[n] = Sum[ Binomial[n-1, k]*a[k], {k, 0, n-1}]; c[n] = Sum[ Binomial[n-1, k]*b[k], {k, 0, n-1}]]; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+Bell_poly(n, -w)+Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
A121868
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives B sequence (cf. A121867).
Original entry on oeis.org
0, -1, -1, 0, 5, 23, 74, 161, -57, -3466, -27361, -155397, -687688, -1888525, 4974059, 134695952, 1400820897, 11055147275, 70658948426, 327448854237, 223871274083, -19116044475298, -314203665206509, -3562429698724513, -33024521386113840, -250403183401213513
Offset: 0
From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as a linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- A. Fekete and G. Martin, Problem 10791: Squared Series Yielding Integers, Amer. Math. Monthly, 108 (No. 2, 2001), 177-178.
- V. V. Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
-
List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^(k+1)* Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
-
[(&+[(-1)^(k+1)*StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
-
# Maple code for A024430, A024429, A121867, A121868.
M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
# Code based on Stirling transform:
stirtr:= proc(p) proc(n) option remember;
add(p(k) *Stirling2(n, k), k=0..n) end
end:
a:= stirtr(n-> (I^(n+1) + (-I)^(n+1))/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 29 2011
-
stirtr[p_] := Module[{f}, f[n_] := f[n] = Sum[p[k]*StirlingS2[n, k], {k, 0, n}]; f]; a = stirtr[(I^(#+1)+(-I)^(#+1))/2&]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
Table[Im[BellB[n, -I]], {n, 0, 25}] (* Vladimir Reshetnikov, Oct 22 2015 *)
-
a(n) = sum(k=0,n\2, (-1)^(k+1)*stirling(n,2*k+1,2));
vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
-
[sum((-1)^(k+1)*stirling_number2(n,2*k+1) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
A143630
Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,.... Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(2).
Original entry on oeis.org
0, 0, 1, 3, 7, 14, 16, -77, -922, -6660, -41264, -233828, -1218392, -5607225, -19220589, 4397930, 1016675382, 14251497833, 151695504253, 1432992328055, 12527186450276, 102042171190168, 760272520469199, 4849866087637364
Offset: 0
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0)....E(1).....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = 14 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = 16 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
-
# Compare with A143817
#
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
end do:
A143630:=[seq(c[n], n=0..M)];
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]]; A143630 = Table[c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+w*Bell_poly(n, -w)+w^2*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
A143629
Define E(n) = Sum_{k>=0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(1).
Original entry on oeis.org
0, 1, 0, -2, -7, -23, -80, -271, -750, -647, 13039, 152011, 1232583, 8750796, 57405464, 349329354, 1899818951, 8008845556, 5981853002, -425732481925, -7285403175563, -89895756043392, -970910901819211, -9663021449412616
Offset: 0
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -23 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -80 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
-
# Compare with A143818
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
end do:
A143629:=[seq(b[n]-c[n], n=0..M)];
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[ Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[ Binomial[n - 1, k]*b[k], {k, 0, n - 1}] ]; A143629 = Table[b[n] - c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
A153229
a(0) = 0, a(1) = 1, and for n >= 2, a(n) = (n-1) * a(n-2) + (n-2) * a(n-1).
Original entry on oeis.org
0, 1, 0, 2, 4, 20, 100, 620, 4420, 35900, 326980, 3301820, 36614980, 442386620, 5784634180, 81393657020, 1226280710980, 19696509177020, 335990918918980, 6066382786809020, 115578717622022980, 2317323290554617020, 48773618881154822980, 1075227108896452857020
Offset: 0
Shaojun Ying (dolphinysj(AT)gmail.com), Dec 21 2008
a(20) = 19 * a(18) + 18 * a(19) = 19 * 335990918918980 + 18 * 6066382786809020 = 6383827459460620 + 109194890162562360 = 115578717622022980
-
unsigned long a(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return (n - 1) * a(n - 2) + (n - 2) * a(n - 1); }
-
t1 := sum(n!*x^n, n=0..100): F := series(t1/(1+x), x, 100): for i from 0 to 40 do printf(`%d, `, i!-coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
# second Maple program:
a:= proc(n) a(n):= `if`(n<2, n, (n-1)*a(n-2) +(n-2)*a(n-1)) end:
seq(a(n), n=0..25); # Alois P. Heinz, May 24 2013
-
Join[{a = 0}, Table[b = n! - a; a = b, {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==(n-1)a[n-2]+(n-2)a[n-1]},a,{n,30}] (* Harvey P. Dale, May 01 2020 *)
-
a(n)=if(n,my(t=(-1)^n);-t-sum(i=1,n-1,t*=-i),0); \\ Charles R Greathouse IV, Jun 28 2011
A074051
For each n there are uniquely determined numbers a(n) and b(n) and a polynomial p_n(x) such that for all integers m we have Sum_{i=1..m}i^n(i+1)! = a(n)*Sum_{i=1..m} (i+1)! + p_n(m)*(m+2)! + b(n). The sequence b(n) is A074052.
Original entry on oeis.org
1, -1, 0, 3, -7, 0, 59, -217, 146, 2593, -15551, 32802, 160709, -1856621, 7971872, 1299951, -287113779, 2262481448, -7275903849, -36989148757, 698330745002, -4867040141851, 10231044332629, 184216198044034, -2679722886596295, 17971204188130391, -17976259717948832
Offset: 0
a(2)=0 because Sum_{i=1..m}i^2(i+1)! = (m-1)(m+2)!+2.
a(3)=3 because Sum_{i=1..m}i^3(i+1)! = 3*Sum_{i=1..m}(i+1)!+(m^2-m-1)(m+2)!+2.
-
alias(S2 = combinat[stirling2]);
A074051 := proc(n) local k;
1 + add((-1)^(n+k) * (S2(n+1, k+1) - S2(n+2, k+1)), k = 0..n) end:
seq(A074051(i), i = 0..26); # Peter Luschny, Apr 17 2011
-
A[a_] := Module[{p, k}, p[n_] = 0; For[k = a - 1, k >= 0, k--, p[n_] = Expand[p[n] + n^k Coefficient[n^a - (n + 2)p[n] + p[n - 1], n^(k + 1)]] ]; Expand[n^a - (n + 2)p[n] + p[n - 1]] ]
(* Second program: *)
a[n_] := (-1)^n (BellB[n+2, -1] - BellB[n+1, -1]);
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
-
from itertools import accumulate
def A074051_list(size):
if size < 1: return []
L, accu = [], [1]
for n in range(size-1):
accu = list(accumulate([-accu[-1]] + accu))
L.append(-(-1)**n*accu[-2])
return L
print(A074051_list(28)) # Peter Luschny, Apr 25 2016
Comments